COUPLED LATERAL AND TORSIONAL FAILURE OF BUILDINGS
UNDER TWO-DIMENSIONAL EARTHQUAKE SHAKINGS

H. Takizawa (I)

SUMMARY

The nature of structural failure caused under significant influence of
torsion is studied by accounting for the two-dimensional effects of excitation
and restoring force relation. From novel points of view, the examinations begin
with an instructive note on the modal properties of torsionally coupled systems
and a tensorial formulation for the response deformation developed on the
horizontal plane. Important features in the behavior close to ultimate failure
are then illustrated by means of a planar distribution of reinforced concrete
biaxial elements. Their yielding and hysteretic modeling in two dimensions
includes additional factors of cracking and cyclic stiffness degradation.

INTRODUCTION

Since early days in the study of structural dynamics for earthquake
engineering, torsional effects have attracted intense concern in assessing the
safety of building structures. Notable contributions can be found in the past
literature of torsionally coupled response, practical implications of which have
tended to be reflected upon existing standards of aseismic design. However
the current state of the art appears to be still unsatisfactory for purposes
of describing important features in the behavior close to ultimate failure.
Necessity of considerable improvements is specifically felt in such points as
the biaxial interaction of yielding and hysteretic restoring forces, and the
2-D (two-dimensional) action of earthquake shakings on the horizontal plane.
In particular, methods for reinforced concrete biaxial systems must allow to
account for the marked softening associated with eracking and the degrading
capacity of cyclic energy loss ds well as the post-yield deterioration of duectility.
With these factors in mind, the present report investigates the nature of
structural failure sustained under significant role of torsion.

Throughout the presentation, examinations place emphasis on deformation
rather than force. This begins with an instructive note on the modal properties
of torsionally coupled elastic systems. A tensor formulation follows to aid the
better understanding of response deformation developed on the horizontal plane.
The subsequent illustration is chosen to highlight trends in the structural
failure of lateral and torsional coupling which occurs under a 2-D ground
motion. The example system consists of a planar distribution of restoring
force elements by means of the reinforced concrete biaxial model formulated
previously by the author.

FEATURES IN EIGENPROBLEM

Art. (1) indicates the equation of motion for single-story rigid-floor
systems subjected to 2-D ground shakings [Fig. 1-(a)], components of the
inertia and stiffness matrices in which can be simplified into Art. (1'). The
first noteworthy point is an equivalent expression of the combined lateral and
torsional stiffness matrix. As shown in Art. (2), this is based on a novel
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(1) [MIB(t)} + (damping term) + [KI{D(t)} = ~[MI[{Ex} Byo(t) + {Ey} Byo(t)]
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a9 Mo o K« O -eyKy
Ml=fo M O Xl= 0 Ky exKy
0 0 iZM eyKy exKy Kg + e?Ky + @Ky

when locating the origin of coordinate frame at G, and the x and
y axes along the principal axes of [Kit

(2) When ey #0 and ey #0 (biaxially eccentric),
Ko + Kux 0 ~ewyKux
Kl= 0 Ko * Ky euxKuy
ey Cuxkwy Ko * efyKux + ey

where Kg : "isotropic and homogeneous reference stiffness",
which is the Teast eigenvalue satisfying

(Dxg » Dyo)

(Dyg » Dyo) : base motion
(Dy » D) : relative translation
@ : rotation
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definition of "isotropic and homogeneous reference stiffness”, K;, and two
components of "concentrated eccentric stiffness", Kyyx and Kyy. The corres-
ponding planar distribution of stiffness appears in Fig. 1-(b), a geometry
concerning the three centers of gravity, shear and "concentrated eccentricity”
(G, S and W) being included in Fig. 1-(c).

A geometrical interpretation of the associated eigenvalue problem is provided
by examining the variation of the natural frequency of oscillation according to
the movement of a specified center of twist on the plane. By use of the formula
in Art. (3), Fig.2 gives an example where the extremal nature of eigenvalues
(concave, saddle and convex points) is appealingly seen. This line of thinking
leads to an interesting finding concerning the limitation imposed on the position
of eigencenters with relation to G and S [Fig. 1-(d)]. The hyperbolic law
becomes of a particular importance for the fundamental eigencenter, ,E.

Art. (4) shows the algebraic eigenproblem in terms of the equivalent
expression of stiffness matrix for biaxial eccentricity. The components of
eigenvectors are represented there by means of the position of eigencenters.

It is immediately seen that Ky is directly responsible for the fundamental
eigenvalue, ;E coinciding with W. Moreover, role of Ky is completely isolated
in higher eigenvalues. Rendered independent of Ky, factors to determine the
position of higher eigencenters are reduced to the position of W and the relative
value between Kyy and Kyy. The same article also includes the modal ortho-
gonality relationships expressed in terms of the position of eigencenters, from
which the following instructive properties of elementary geometry can be
derived. Given the inertia circle, C, and the position of W, higher eigencenters
turn out to lie on a line, L, whose drawing procedure is indicated in Fig. 1-(e).
A pair of L and the symmetric point of W against G is the so-called polar and
pole with respect to C in the theories of quadratic curves. The three eigen-
centers form an "acute" triangle, whose orthocenter is G [Fig. 1-(f)]. More
specifically, location of higher eigencenters on L can be characterized by the
changing value of Kyy/Kyx as suggested in Fig. 1-(g). On the other hand, the
condition of uniaxial eccentricity yields far simpler properties [Fig. 1-(h)]. The
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two eigencenters may be considered as a conjugate pair with respect to C.
In addition, Art. (5) supplements the formulas of modal decomposition. Partici-
pation functions are specified therein by use of the position of eigencenters.

The equation of motion takes a form of Art. (6) for multi-story systems.
Consider particular cases in which system characteristics are ideally separable
between the plane and the storywise axis as defined in Art. (7). Art. (9)
indicates the eigensolution including modal participation functions can be then
obtained as a simple combination of the separate planar and axial solutions of
Art. (8). Therefore the preceding properties of single-story systems can be
readily extended to this family of multi-story systems.

Bty ] [ 0 -y [ an [ Ellaxey,0)[2] Elde(xy,t) ay(x.y.tn]
{d (x’y,t)}’[ 01 x ] Dy(t) Eldx(x,y,t) dy(x,yst)]  E[[dy(x,y,t)]2]
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- ; [ s(Bu)xx(x,y) 5( 8u)xy(x » ¥) ]{sfx(t)} where L (80) (et
s=1 L g8y (x, 0 glBulyylx, y) dlsfy(t) [Ryy(x,y)1= xra.;j{ Bu);i(:;’)}LJ(Bu)xx(x.y) 7BU) gy (x,)

where [S(Su)xx x y) S(Bu)xyx y) ]
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-¥x—-— { Sey(s};y ¥ -s¥x(s&y-Y) } bl 4J'at'f( 2(8u)yx(x,y) By y) By o)
T Teiart 8 | g losex #%) ~gix(-sx+%) i(a")xy(x'”} . .
Y R in, Fevim) +{ (Bu) gy Lx.) [ B0 5(8Dyxy))
3
s(Bu)xx(x , ¥) (Bu)xy(st) ] [ 10 ] [ N )]tZZ { (Bu)‘y(x,y)} (gu) ) '(B
L [ (Buyx(xy) s(Bulyy(x.y) 1710 1 o 1 ;” £(Bu)yy(xoy) [ By (o) 5(Bedyy oy,
7, f f, Byo(t) i,3=1n
{s-~"(”}+zs;sn{"*m} e {s *m} {“ } 2050+ £0)
sfy(t) sfy(t) sfy(t) Dyo(t) agj= 4
s ¢ viscous damping factor in the s-th component 4,8.80;,0+ 58:0)(; 57.‘” ’5 )+ (02 - a7)2
(6) [IMy,] -+ [Mxnl][(ﬁl}] [[K“] [Kln]}[{bl}} (12) BI14, (x,y, 1) 2] = Loos ¥ sinm‘: Bl dy(x,y,t) 2]
............. (damping term) +[ <eecemeeeeene fon ELdy (x,y,t) dy(x,y,t)]
L:Hm] vor [MpnddLEBp} [knyd *** CKnldL{Dn} E[dx(x,y.t)dy(x.y,t)]]{COSW}
[Myy] ==+ (M1 [{Egy) €y} E[[dy(x,y,t)]2] siny,
N U - 1B ot Eyn) where dw(x,y.t) =d,(x,y,t) cos\wdy(x.y,t) siny
[Mpy] - [Manld L{Exn} {Eyn} : single component of the 2-D drift of {gxghy.:;}
Dei extracted in the direction of Yy,

1 f i
104} =4{Dyj (i=1~n) an angle ¢ from x axis

o (3) - A1y 2- 28,7+ Cyy (sym.)
Rex(a)I= | ) oo, R4 Bug - X2 28,,%
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(- 02 Ma]+ [Ka 1) LUy} = {0} Ba1 Byz Bys = Yoo
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X component of participation factor = B,y tBya Eldy(x,y,t) dy(x,y,t)] = - A(X - By/A) (¥ - By/A) - (Cyy - ByBy/A)

¥ component of participation factor= By ¢8ya (s=1~3, t=1~n)  Elldy(xy,t)[2]=A(X- By/A)2 + (Cyy - BR/A)
where

10) [Byo(t
a0 {Exogt;}: two-dimensional white noise uncorrelated between major and A AL Az A3
; y: minor components By By, Byz By3
B By Byz B XX
[E’[Dxa(tl)oxo(tz)] E[on(tx)byu(tz)]] [rxx xxy]m -t CL = C?: C:: cz: {_zxx,
S[Dyg(t1 Dxo(t2)] E[Dyo(ty) Dyo(ty)] Iny lyy e Yy

C C21 Cap C.
E[ -+ ] : operator of ensemble average for stationary process Xy 22 -3z

c €3y C32 C
with [Ixx I,y]-[coso -sirw][lmax 0 ][ cosé sing 447 31 Ca2 C33

Iny Tyy ) "Lsing cose )l 0 Innll-sing cose] 09 [ Ellax(xuyat)]2] Eldy(x,y,t) dy(x,¥,t)] ]_ [ Lx I,q]
Imax : intensity of white noise in major component Eldy(x.y,t) dy(x,y,t)] B|dy(xy, t 121 Ty lyy
Inin : intensity of white noise in minor component when  Kyy = Kyy =0

¢ :orientation angle of major axis measured from x axis
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TENSORIAL NATURE OF RESPONSE DRIFT

With a view to obtaining better insight into the fundamental characteristies
of response drift, an overly approximated but practically useful idealization of

ground motions is taken up.

This is a three-parameter family of 2-D white

noise uncorrelated between its major and minor components in Art. (10). Then
it can be shown that the expectancy relationship of Art. (11) holds for the ampli-

tudes of 2-D drift during stationary elastic response.

Obviously the left-side

set of ensemble averages defines a tensor on the horizontal plane, from which
the expectancy of amplitude in any direction is swfficiently determined by the

formula in Art. (12).

Three symmetric matrices in the right side of Art. (11)

([Rxx], [Rxy] and [Ryy]) embody the pointwise system properties of torsional

response, rendered independent of the excitation.

Use of the expression of

participation functions in Art. (5) leads then to a more explicit representation
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of these matrices in the form of Art. (13). Eliminating the separable factor of
the position of response evaluation, a set of fifteen system parameters (A;, Bij
and C;;7) becomes relevant to the current formulation.

The above results provide a compact expression of Art. (14) for the three
components of the expectancy tensor of 2-D drift. Their pointwise distribution
is quadratic, indicating the existence of an ad hoc center of response and with
the parameters of A, By, By, Cxx, Cxy and ny related simply to the 2-D
characteristics of excitation. Using the same eXample of torsional system as in
Fig. 2, dependence of these parameters upon the orientation of major axis and
the role of minor-axis component is examined in Fig. 3. Removal of "concent-
rated eccentric stiffness" from the example system, thus resulting in a triple
eigenvalue associated with K, and in ideally translational 2-D response, offers
a normalizing factor for the present illustration [vide Art. (15)]. Tendency
of 2-D excitation confined in a single direction is seen there to accompany
more pronounced dependence on its orientation. Singularities appear when
nearly unidirectional excitation acts along the line through G and ;E, influ-
enced directly by the diminishing contribution of the fundamental mode. Effects
of the modal participation are most strikingly evidenced by the locus of ad hoc
center of response included in the figure. However such extreme instances
may be practically unimportant, since most of significant strong-motion records
have had stronger trend of planar sprawl with over 50% amplitude in minor-
axis component (e.g., Ref. 1).

Fig. 4 illustrates the distribution of response drift, using the same example
and specifying the orientation of major axis and the relative contribution of
minor-axis component. Part (a) is intended to display the 2-D nature of drift
by means of the preceding formula of Art. (12). Comparison among the sampling
points clarifies more involved response near E, affected considerably by higher
modes. More distant from 1E, the response tends to become simpler reflecting
the dominant role of twist in the fundamental mode. The latter is related to
severely necked shape of the 2-D drift despite the sprawled shape for the
excitation and the response of the reference system. When noting only the
maximum directional amplitude of drift, the contour plot of part (b) is obtained.
Its normalizing factor is again the corresponding drift of the reference system,

¥/im
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@ Elastic stiffness of the elements; orientation of
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f viscous damping factor in elastic response.

i
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Fi gure 5 Specification of example problem
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hence the numeral being interpreted as the increasing factor of drift caused by
the effects of torsion. The contour gives an inclined ellipse around the ad hoc
center of response, tending to be circular with longer distance from the point.

FAILURE OF YIELDING AND HYSTERETIC STRUCTURE

Results of an example calculation are shown for understanding significant
features observed in the combined lateral and torsional failure of yielding and
hysteretic systems under the action of 2-D ground motions. Specification of the
system and the excitation examined herein can be found in Fig. 5. Consisting
of three discrete restoring elements, composition of their elastic stiffness results
in the same properties of total system as those used in the foregoing Figs. 2, 3
and 4. Moreover the orientation of major axis and the relative share of minor-
axis component specified in Fig. 4 turn out to be nearly consistent with the
excitation, when replacing the expectancy of the product of amplitudes by the

uriaxial ductility factor=3.C

X component in 2-D drift of Elements 1 and 2
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VT cracking level x 3
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TTeseed ""_‘-—"cracxing level
(b) Lissajous orbits of drift for Apay/Ay=0.1 (c) Lissajous orbits of drift for Apax/Ay=0.5
Figure 6-(b), (c)
corresponding integral over the entire time axis. Therefore its fundamental
properties are evident from these figures, hatching in Fig. 4-(a) indicating the
2-D drifts of the current concern. The absolute value of stiffness is so designed
as to provide a fundamental period of 0.3 sec for the system.

Restoring force relations of the individual elements are characterized in the
two dimensions of horizontal plane. Restricted to uniaxial loading along their
principal axes, the relations reduce to the degrading quadrilinear law for rein-
forced concrete. The latter allows to take account of the degrading capacity of
hysteretic energy loss and the deteriorating ductility far beyond yield point, in
addition to the softening due to cracking and yielding. By use of a phenomeno-
logical analogy with the stress-strain plasticity theory in the solid mechanics, the
2-D formulation resorts to a certain set of hardening and flow rules on the force
plane. Its mathematical details have appeared in Refs. 2 and 3.

For the total system, an identical yielding strength expressed as an accele-
ration, A,, is assumed between its principal axes. Also the peak acceleration
in major-axis component, Apax, is used to stand for the strength of 2-D exci-
tation. Then the 2-D drifts of individual elements become a matter of specific
interest, normalized in terms of ductility factor and related to the relative
strength of Apayx/Ay. Fig. 6 summarizes the results of analysis along this line.
Part (a) contains an instance featured by noticeably developed yielding, while
additional parts of (b) and (c) supplement a totally elastic instance and
a cracked but unyielded instanceé, respectively. By comparisons, the 2-D modes
of drift are seen to differ markedly according to the different levels of response.
This suggests the location of effective center of twist can vary significantly
with the progress of cracking and yielding. For instance, the case of part (a)
exhibits a trend of translational drift along the peak locus. Closer examinations
and their design implications will be reported elsewhere.
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