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SUMMARY

Seismic design codes define static eccentricity as the distance between
the center of mass of a story and a point on its plan called the center of
resistance. This eccentricity is regarded as a measure of the torsional ten-
dency of the structure. This paper shows, however, that the existence of cen
ters of resistance as origins of eccentricity is restricted to a particular
class of structures; for a general multistory building such concepts are phsy
ically meaningless.

INTRODUCTION

Current seismic design codes, such as ATC, require three-dimensional an-
alysis for buildings classified as irregular. Classification criteria are
typically based on the concept of static eccentricity, i.e., the distance be
tween the center of mass of a story and a point on its plan called the center
of resistance. Furthermore, even if a three-dimensional analysis is perform
ed, some codes prescribe a fifty per cent increase of the static eccentricity
to account for dynamic amplification. Obviously, these specifications reflect
the implicit belief that a building can be induced to vibrate in a purely
translational motion if the story mass is shifted to compensate for the tor—
sional tendency of the stiffness layout.

The calculation of the center of resistance in a one-story structure is
quite straightforward. The corresponding static eccentricity is a  property
of the structure that has a clear physical meaning, namely that for zero ec-
centricity the structure vibrates without torsion when excited by a trans-
lational earthquake motion. However, there does not appear to be any gener-~
ally accepted extension of the concept of center of resistunce to multistory
buildings, except for cases where symmetry makes the problem trivial. Infact,
seismic design codes require the determination of the coordinates of the cen-
ters of resistance of all stories to account for torsional effects, but very
few of them give a definition of such centers or specify a procedure to com—
pute their positions. Moreover, the most commonly used definitions, or inter
pretations, are inconsistent and do not necessarily relate to torsion free
response (Ref. 1).

The purpose of this paper is to discuss the physical meaningfulness of
the concept of center of resistance in multistory buildings, and to identify
the class of structures for which it is relevant.
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THE PSEUDO-TRIDIMENSIONAL MODEL

Most buildings are structured as a set of mutually perpendicular resis-
ting planes, connected at each story level by floor diaphragms sufficiently
rigid so as to be regarded as undeformable. A suitable model for such build-
ings considers the resisting planes as macro-elements connected to three-de-
gree of freedom nodes, i.e., the rigid diaphragms. For dynamic analysis, it
is desirable that the diaphragm degrees of freedom chosen be the two compo-
nents of displacement of its center of mass, uj and vi, and its rotation Bj.
Assembling the lateral stiffnesses of the component resisting planes accord-
ingly, the following stiffness equation is obtained

{u} |= (K] [ny] [K, gl {u}
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where the components of {U} and_{V} are the story forces in the X and Y direc
tions, and the components of {6} the torsional moments about the center of
mass of each floor. The submatrices in this equation can be found to be
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where [K_.] and [K_.] are the lateral stiffness matrices of the p resisting
planes in-the X difdction and of the q resisting planes in the Y direction re
spectively; [X.] is a diagonal matrix containing the distances measured from
the centers of“mass of each story to the j—th Y-direction plane; [Y.] is a
diagonal matrix containing the distances measured from the centers of mass
of each story to the j-th X-direction plane.

It is fitting at this point to discuss the limitations of the pseudo-
tridimensional model. In the first place, the rigid diaphragm assumption,
though realistic in most cases, does not hold in buildings in which one of
the plan dimensions is significantly larger than the other, or in which the
plan is irregularly shaped. In the second place, strictly speaking, the mod
el is good only if the resisting planes are unconnected, i.e., if no columns
belong simultaneously to two resisting planes and if no beam of one plane fram
es into another plane. In fact, the model does not enforce axial compatibil-—
ity of orthogonal elements. However, the results given by the model are cor-
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rect when all planes in each direction are identical and the torsional compo
nent of the response is negligible. This is so because under such condi
tions, the X-direction response does not involve flexural deformation of the
Y~direction frames.

For buildings in which the planes in a direction are not all equal, but
not substantilly different, the response giyen by the pseudo-tridimensional
model is a reasonable approximation to the real one, provided it involves a
low level of torsion. Actually, torsion is the most important source of in-.
compatible axial deformation of columns and torsional coupling of beams, since
it involves a non-uniformdeformation of the resisting planes in both direc-
tions simultaneously. This discussion leads to the conclusionthat the pseudo
tridimensional model, despite its limitations, is suitable for studying tor-
sional uncoupling and the existence of centers of rigidity.

TORSIONAL UNCOUPLING

The governing equations of motion for a pseudo-tridimensional model of a
building under plane seismic excitation can be written as

[M] O 0 {al | + [KXX] 0 [Kxe] {ud | = —ﬁg cosa [M {1}
0 [M] O {v} 0 [Kyy] [Kye] {v} sena [ M ]{1}
0 0 [J] {8} [Kxe]t [ng]t [Regl | [ {0} 0

where [M ] and [J] are diagonal matrices containing, respectively, the mass
and the centroidal moment of inertia of the stories; 0 is the angle formed by
the excitation plane with respect to the x-axis; and {1} represents a column
vector of ones.

The structural response will ordinarily involve both displacement and ro
tation of all stories. Actually, for torsion-free displacement to be pos—
sible, the two following formally independent differential equations

(M1 {4t + (K, 1{u} = -iig coso [M1{1}

(2)
(] {5 +x _ 1{v} = -4 sena [M ]{1}
yy g
must have a solution that complies with the coupling linear relationship
t t
[Kxe 1- {u} + [Kye 1" {v} =0
Except for a very particular case, i.e., a structural system in which
[Kxx] =[K 1 and [Kx 1=8[K e] under an excitation in the direction
o Ftan ' (Z¥B), the cdnditions dfe met only if
[KXe]=[Kye]=0 3

so that the coupling equation vanishes altogether.
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Certainly, this is also a particular case of structural stiffness layout,
but it corresponds to a type of building that will have a rotation-free re-
sponse for any excitation that does not involve torsion. Furthermore, since
the matrices [K_,1 and [K e] are dependent on the positions of the centers of
mass of the stories, it” might be possible that Eq. 3 could be satisfied for
any structure if suitable centers of mass were specified, i.e., it might be
possible to define a mass distribution layout that would "comprensate' the tor
sional tendencies of the stiffness layout.

A change of position of the centers of mass, within the context of the
assemblage of the stiffness matrix, can be regarded as the coordinate trans-
formation

{ul = {uf +[n1{6} {vl={v} -rz1{e} (4)

in which [Nn] and [ ¢ ] are diagonal matrices that contain as elements the diffe-
rences

* B * s
T. = x. — x5 n, =v; - vy; (5)

% %
of coordinates between the new center of mass, (x., y.), and the corresponding
old one, (x., v.). The coordinates of the centers of mass of all stories are
referred to"a common origin that will be referenced under that name in what
follows.

The mass matrix is formally invariant under this transformation. Three
of the component submatrices of the stiffness matrix, namely, [K__1, [Ky,]
and [va] do not change, while the remaining three submatrices are modi%ied
as follows

[Rep] = [Kged + [N 10K 1InT+ [T1IR 1ICT+n1IK g1 + (K 1% [n]

t
- (21K g1 - [Kg1 [ T]

_ Imposing the condition that both transformed coupling matrices [K e] and
[Kye] be equal to zero, leads to the expressions x

-1 -1
[nl=-IRglIK] [2)=[R IR ] (6>

that would render the solution of the problem provided the matrix multiplica-
tions involved actually produce diagonal matrices as results. In a general
structure this does not occur, so that inertial "compensation" of the torsion
al tendency of the stiffness layout is possible in a particular classof struc
tures only. -

In order to study the characteristics of the "compensable' classof struc

tures, it is convenient to examine the expressions given by Egqs. 1. The ma-
trix [Yj] that appears in the definition of [sz] can be written as
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in which yj is the coordinate of the j-th X~direction plane with respect to
the common~origin; [1] is*the unit matrix; and [Y¥] is a diagonal matrix con-
taining the coordinates y;j. Hence, [KXG] can be written as

™M

O % P
[K gl=-2 Y [KXJ.]+[Y]§[KXJ.]

(&)

or in the form

v *
[Regl=-I[R gl + Y JIK_]

where

Matrix [k ] is independent of the position of the centers of mass. Fur-
thermore, since it is obtained as a linear combination of the symmetric stiff-
ness matrices of the resisting planes, it is itself symmetric. In terms of
this new matrix, the vanishing condition for the coupling matrix [Kxe] can be
expressed as

* vy
(In1+0Y 1) (K, 1=1K ]

An important implication of this relatiomnship is that the product of a
diagonal matrix, [C] + [Y*lm’ and a symmetric matrix, [K__ ], is supposed to
yield a symmetric matrix, [K_,], also. This is the center of the discussion,
since this condition requires that the diagonal matrix be proportional to the

unit matrix, i.e.,

(1+0Y 1=y (1] )

Two conclusions can be drawn from this result. In the first place, it identi-
fies torsionally compensable systems as those having a stiffness layout such
that

[K 1=y, [K.] 8

i.e., the coupling matrix [K_,] is proportional to the translational stiffness
matrix [Kxx]' In the second place, since Eq. 7 can be rewritten as

— % * -
CHER RIS M i=1, 2, ...,n)

it shows that,the compensating centers of mass of all stories have the same
coordinate ?i = .-

An identical argumentation will lead to the conclusion that torsiomal com
pensation requires that the Y-direction stiffness layout be such that

v
[Kyg = %c [Ryy] 9
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in which [KyG] is defined as

v n
[Kygl= 2% [¥y5]

[y e

where ¥. is the coordinate of the j-th Y-direction plane with respect to the
common origin. It will also follow that the compensating centers of mass have
the same coordinate X =X,

As a final remark, it is worth to note that if compensating centers of
mass do exist, they lie in a vertical line, since they all have the same co-
ordinates. The identification of compensating centers of mass with  centers
of rigidity, is quite obvious.

ASSESSMENT OF TORSIONAL COMPENSABILITY

From the above it is concluded that a structure is compensable in the
X-direction if the linear relationship represented by Eq. 8 is satisfied. The
most obvious case in which the linear relationship holds is symmetry. A sec-
ond case is that of resisting planes with proportional stiffness matrices.
Additionally, given the linearity of the condition, a structure with two sub-
groups of resisting planes independently compensable, will be compensable as
a whole if both subgroups have a coincident line of centers of resistence.

Most structures will not be compensable, and therefore, no centers of
resistance can be defined from a dynamic response point of view. However, it
is reasonable to think that there may exist structures that barely fail to

qualify as compensable, for which Eqs. 8 and 9 are satisfied in an approximate
sense. An indication of the deviation from compensability is obtained by ex-
amining the elements of the matrix [D] given by

i -1
[D]=1[KglIK 1

Of course, in a truly compensable case, [D] is a diagonal matrix and all
the elements of its diagonal are equal. In nearly compensable cases, the po-
sition of the origins of eccentricity could be estimated as the average of
the diagonal elements, thus minimizing the quadratic error of the diagonal
terms. However, such a procedure partially ignores the torsional properties
of the system that certainly affect compensability.

A second approach to the assessment of torsional compensability is to
compare the real modes of vibration with those of an hypothetical uncoupled
structure. Assuming that the Y-direction is compensated, so as to limit the

discussion to the x-8 coupling, the normal modes of the uncoupled structure
are solutions of the eigenvalue problems

(R 1o 0 = wl (1 {y [Kggl gt = wf 131 {yg}

in terms of which the real modes can be written as
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where the {¢X} are predominantly translational modes and the {¢.} are predomi
nantly rotatlonal modes. In a compensated system, [a..]and [b;:] are equal
to the unit matrix while [c., ] and [c]!_ ] are null. "~The unitaty character
of the first two matrices i85 remarkably stable, the last two depart rather
rapidly from nullity when the compensated system is perturbated by altering
its sttiffness properties.

From a practical point of view, the above approach has the disadvantage
of requiring the computation of the normal modes of the coupled system. An
alternative approach can be developed by making use of the perturbation theory
presented by Kan and Chopra in Ref. 2., where the following second-order ap-
proximation coefficients are given

_ o= ~ _ W’X}E (K, ol {vg}
a.. =b.. = C., = -C, . = (10)
1] 1] L . . ik ki 2 2
0 143 in - wek

This approximations are very accurate for nearly compensable structures.
This suggests the possibility of estimating a sort of "approximate origins of
eccentricity" in nearly compensable structures. Such origins, chosen all in
the same vertical line, can be determined making ci: given by Eq. 10 equal to
zero, in an attempt to minimize the torsional tendency of the structure by
uncoupling the two fundamental modes of vibration. The common coordinate yg
of the approximate origin of eccentricity is given by

{qk}f [EXQ] {wﬁi
y = -
Ly h Ik (ugh

It must be noted, though, that {y h depends on the value of y,. Hence, an
iterative scheme must be followed solving for the first mode of the eigen val

ue problem
2 ; .
([Xggl + 3, (K 1) U} = wg 131 {ugh

In several numerical examples performed, it was found that the cjy coef-
ficients for nearly compensable cases with the centers of mass placed in the
approximate origin of eccentricity, were indeed very close to zero. In fact,
they were smaller by an order of magnitude than those obtained by placing the
centers of mass in points recommended by some codes to be used as centers of
resistance.

SUMMARY AND CONCLUSIONS

The most relevant features of the torsional phenomenon in multistory
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buildings discussed in this paper are:

a)

b)

c)

d)

e)

The definition of centers of resistance as origins for measuring eccen-
tricity must be associated to the possibility of torsion-free dynamic re-~
ponse. From a physical point of view, centers of resistance have a sen-
sible meaning only if they represent a set of points such that if the cen-
ters of mass coincide with them, the structure will have a purely trans-
lational motion as a response to any torsion-free seismic excitationm.

Centers of resistance must be such that if the eccentricity is zero in all
stories, the modes of vibration of the building uncouple into purely trans
lational modes and purely torsional modes.

Centers of resistance do not exist in general. Caution should be wused in
dealing with the available definitions of centers of resistance. In par-
ticular, the "centers of shear" of ideal shear type buildings are not to
be regarded automatically as centers of resistance.

When centers of resistance do exist, they all lie in a vertical linme. Tor
sion-free vibration is achieved when all story centers of mass lie in that
same line.

Structures for which centers of resistance do exist, i.e., structures sus-
ceptible of dynamic compensation, have stiffness layouts such that the
torsional matrices are proportional to the corresponding translational
stiffness matrix.
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