EFFECT OF MODAL COUPLING ON DYNAMIC RESPONSE

Loren D. Lutes (I)

SUMMARY

The accuracy of approximate modal analysis is investigated for simple
structures which do not have uncoupled normal modes. It is shown that the er-
rors of neglecting modal coupling are small in most instances, but are very
significant in some particular situations. Primary emphasis is given to mean
squared response values as computed from random vibration of the coupled and
uncoupled structural models, and limited results are presented for determin-
istic response to a simple pulse of base acceleration. The possibility of
major effects of modal coupling is seen to apply to both stochastic and deter-
ministic situations. The results are found to be particularly relevant to
equivalent linearization analysis of yielding structures.

INTRODUCTION

Modal analysis is a common technique for studying both deterministic and
probabilistic dynamics of structural models. It is well known, of course,
that the usual method is strictly applicable only for a system with damping
such that there are uncoupled normal modes (Ref. 1). In many situations,
though; one may choose to completely ignore this uncoupling condition on the
grounds of not having any very specific information about the proper form for
the damping matrix. In this situation it is common to simply choose a damp-
ing value for each mode, based on past experience. The modes are then treated
as uncoupled, and no explicit damping matrix is used.

Sometimes a damping matrix is known, and it does not give uncoupled
modes. That is, the transformation of variables which simultaneously diagon-
alizes the mass and stiffness matrices does not also diagonalize the damping
matrix. There are known methods for solving a system of coupled equations,
but these are generally less efficient than modal analysis. Thus, one may
choose to seek an approximate solution by replacing the nondiagonal trans-
formed damping matrix by a substitute diagonal matrix, then using modal analy-
sis. The simplest method of doing this diagonalization is to completely ne-
glect the off-diagonal terms, but more elaborate methods may also be used. For
stochastic analysis, in particular, a diagonalization procedure has been sug-
gested whereby the modal damping values are chosen in such a way as to attempt
to account for the energy dissipation due to off-diagonal terms in the trans-—
formed matrix (Ref. 2).

The following is an analysis of the type and magnitude of errors that may
result from approximating a particular type of coupled-mode system by an un-
coupled system. First, the system is analyzed when the excitation is a random
process. It is shown that the errors in response prediction are usually
small, but can be very significant in some situations. A deterministic analy-
sis is given for two sifuations where the stochastic analysis indicates a
major effect of modal coupling. The®results confirm the finding that the
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response of an uncoupled model can be significantly different from that of the
original system with coupled modes. It is also shown that equivalent linear-
ization analysis of a yielding structure is an important application of the
present work. In particular, such linearization can lead to models for which
modal coupling cannot be ignored without introducing major errors.

RANDOM VIBRATION

Figure 1 shows a mechanical model for the simple linear two-degree-of-
freedom (2DF) system which will be studied here. Note that the mass and
stiffness of the system are symmetric, while the damping is applied only to
the x| motion. This model has been chosen in order to have a very simple sys-—
tem with a particularly large degree of modal coupling.

The equations of motion for the system can be written as:

mx, + ek, + (kl + kz)xl - kzx2 = -mz (1
mk, - kle + (kl + kz)x2 = -mz (2)

where dots denote derivatives with respect to time. The x; and x, are meas~—
ured relative to the base, and the base acceleration z is applied to both ends
of the model. This base acceleration is taken to be a stationary white noise
stochastic process with zero mean and power spectral density So'

Exact Solution

Simultaneous equations governing the covariances of stationary response
can be obtained by multiplying eqs. 1 and 2 each by X1s Xg, il and iz and
taking the expectation (statistical average) of each. This procedure is
simply a component form of the usual approach for finding the response covar-
iances from a Lyapunov matrix equation (Refs. 3 and 4). TFor this 2DF system
the component form is quite simple. The simultaneous equations are easily
solved to give
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Approximate Modal Solution

The approach is to write the response vector as a linear combination of
the two modes of the undamped system. For this system with symmetric mass and
stiffness, this gives

TNty (8
X2 = yl - y2 (9)

Substituting this into egs. 1 and 2 gives

m§l + (c/2)}'rl + (c/2)§72 + k = -mz (10)

1¥1
m§2 + <c/2)9l + (c/2)}'72 + (kl + 2k2)y2 =0 (11)

Note that eqs. 10 and 11 are very much coupled. The so-called off-diagonal
damping terms (§2 in eq. 10 and yi in eq. 11) have the same coefficients as
the on-diagonal terms.

The simplest approximate solution of eqs. 10 and 11 is to completely
neglect the off-diagonal coupling terms. The resulting single-degree-of-
freedom (SDF) form of eq. 11 is homogeneous, so gives y,(t) as identically
zero. Thus, egs. 8 and 9 give X = Xy = ¥p, and solving the SDF form of
eq. 10 gives

2 2 2
E(x ") = E(xx,) = E(x, ) = 2m°s_/(k ) (12)
B(%.%) = E(k,%,) = E(:,%) = 2mS _/c (13)

Xl = Xlxz = X2 = o
E(ilxz) = E(ile) =0 (14)
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Penzien, Kaul and Berge (Ref. 2) have presented a general procedure for
replacing a coupled damping matrix by an "equivalent™ uncoupled (i.e., diago-
nal) matrix C*. The jth term of the diagonal matrix is given by

c.. E(y.y,)
c#. - § : ik i’k (15)
JJ E(§ Z)
k ]

where c.. is a component of the coupled damping matrix. It can be shown that
eq. 15 gives the same energy dissipation rate for the coupled and uncoupled
systems if they have the same response velocities. Note that eq. 15 defines
the substitute damping parameters in terms of the response levels. Thus,
iteration is generally required to simultaneously find the c¥: values and the
response covariances. A simple initial guess for beginning the iteration is
to neglect the off-diagonal terms Cije Applying the above procedure to the
system of eqs. 10 and 11 does not give any improvement. As noted above, ne-
glecting the coupling process gives y, (and therefore ¥5) identically zero, so
that eq. 15 converges immediately to c%*, = ¢ = c¢/2. The equation for c§2 is
undefined (zero over zero), but this is irrelevant since the uncoupled equa-
tion for yz(t) has no excitation. Thus the results in eqs. 26-28 are com-
pletely compatible with the technique of Ref. 2. Using the C* matrix may ap-
proximately correct for modal-coupling damping terms in some situations, but
it provides no correction at all for this symmetric problem.

Effects of Modal Coupling

Of the eight response quantities given in eqs. 3-7, four agree identi-
cally with the results from the approximate modal solution (eqs. 12-14). The
final terms in eqs. 4 and 7 represent important effects of modal coupling.
The mean squared values of both displacement and velocity are underestimated
if modal coupling is neglected. Ignoring these terms may cause insignificant
errors in many situations, since they are of the order of c*/(km), but in
other situations the errors may be substantial. In order to present the
coupling effect in somewhat more detail, let

B % = e?/(4k m) (16)

Note that B_ is the fraction of critical viscous damping in the SDF oscilla-
tor formed by considering only the left-hand portion of Fig. 1 (i.e., for

k2 = 0). For the special case of k2 = ky, Fig. 2 shows the correction factors
of eqgs. 4 and 7. Correction factor, here, means the ratio of the exact mean
squared response to that obtained from the uncoupled equations.

An even more important effect of the modal coupling is seen if one con-
siders the mean squared distortion in the k, spring, E[(xz—xl) ]. Symmetry
makes this term identically zero for the uncoupled approximation, but it is
non-zero for the exact solution. Even though this distortion is of the order
of damping squared, ignoring it gives an infinite percentage error.

DETERMINISTIC COMPARISONS
The analysis given here is limited to two particular situations in which

modal coupling was shown to be quite significant by the above random vibration
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analysis. In particular, ky; = ky as in Fig. 2 and the B, of eq. 16 is chosen
as 0.5 and 1.0. The particular dynamic situation considered is the response
to a Dirac delta pulse of ground acceleration. Thus the equations to be
solved are simply the homogeneous forms of Eqs. 1 and 2, with initial condi-
tions of %; = %, = 1. Note that xl(t) and x,(t) are then the impulse response
functions used in writing responses to other excitations by Duhamel convolu-
tion integrals.

One way to find the exact solution for this homogeneous system involves
first rewriting it as a first-order matrix equation

mZ + AZ = 0 (17

where Z is a vector with components i, x,, il and %,, and

0 0 -m 0
0 0 0 -m
A =
kl + k2 -k2 c 0 (18)
—kz kl + k2 0 0

One can then write the solution as a linear combination of the four complex
eigen solutions, with the coefficients chosen to satisfy the proper initial
conditions. The solutions can be simplified to the following form

woxj(t) = (Aj cos W, t + Bj 51n(ult) exp(—Blwot)

1

+ (-A.cosw
j 2

t + cj sin(nzt) exp(—Bzwot) for j =1,2 (19)

L
where w, = (k/m)? is the frequency of the fundamental mode of the uncoupled
system. For the system with B, = 0.5, one obtains: wy = 1.033w,, wy = 1.601w,,
By = 0.291, By = 0.208, A} =-0.236, B} = 1.327, C; = -0.244, A, = 0.400,

By = 1.067, and C, = -0.043. For BO = 1.0 the values are: wy = 0.832u,,
wy = l.439w0, B] = 0.862, 82 = 0.138, Ay = 0.225, By = 1.785, Cy = -0.224,
A2 = 0.482, B2 = 0.533, C2 = 0.630.

Next consider the uncoupled approximate solution obtained by ignoring
the off-diagonal damping terms. As in the random situation only the funda-
mental mode is excited, and this mode has undamped frequency wy and damping
factor 60/2. Thus the impulse response may be written as

xl(t) = xz(t) = po—l sin(pO t)eXp(—Bomot/Z) (20)

with P, = 0.968(.0o for Bo = 0.5, and O.866wo for Bo = 1.0.

Figure 3 compares the exact X, and x, responses with the result from the
uncoupled approximation. Obviously the modal coupling does have significant
effects in the two situations shown, particularly for By= 1.0. Consider the
amplitudes of x, and x, during the first "cycle" of response, i.e., until x(t)
again equals zefo with“positive slope. The amplitude of X, during this cycle
is significantly larger than for the uncoupled approximation. The amplitude
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of x,, on the other hand, is smaller than the approximation during the first
half=cycle, but exceeds the approximation during the second half-cycle. This
seems to agree qualitatively with the result 1n random vibration that the ap-
proximation is good (exact, in fact) for E(x 2y put underpredicts E(x2 ).

One may also note from Fig. 3 that increasing B_ from 0.5 to 1.0 has
almost no effect on the amplitude of x, (t) during the first cycle, although
the period is reduced by the 1ncreased damping. The increased damping does
significantly reduce the first-cycle amplitude of xl(t) Finally, note that
for B = 1.0, the exact solutions decay much less rapidly with time, than does
the ugcoupled approximation. Clearly this is due to the fact that B
much smaller than 8 /2 in this situation.

Note, also, that the uncoupled approximation again gives no distortion in
the k, spring of the model. Figure 3, though, shows that this distortion may,
in fact, be quite substantial. This is consistent with the failure of the
uncoupled approximation to predict the values of this distortion in random
vibration.

EQUIVALENT LINEARIZATION

The random vibration analysis showed that the error of neglecting modal
coupling varies like 60 . For most structural damping values this error can
generally be ignored. One situation in which large damping values may occur,
though, is when a spring and a dashpot are substituted for a yielding element
in equivalent linearization. For example, for a nearly elastoplastic SDF
oscillator one reasonable choice for the substitute linear system has a damp-
ing factor as large as B, = 0.53 (Ref. 5). (The stiffness in this substitute
system is only about 10% of the preyielding stiffness.) Thus, if yielding
occurred in only one element of a 2DF model, then use of this substitute model
could lead to a linear system like that treated above with B, = 0.5. Recall
that eq. 12 gave the exact value of E(x 2) as 50% larger than the value from
the uncoupled approximation in that case€. Also, the mean squared distortion
between the masses in that situation is about 50% of that for Xy, compared to
zero for the uncoupled approximation.
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Fig. 3. Deterministic Response
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As mentioned at the outset, the model of Fig. 1 was chosen to emphasize

the effect of modal coupling. In particular, modal coupling provides the only

excitation of the higher mode, since the system is symmetric except for the
damping. However, modal coupling has also been shown to be important in an-

other equivalent linearization situation which lacks this symmetry. Brinkmann

and Jan (Refs. 6 and 7) considered a linearization similar to that described

above for a model representing a two-story building with yielding only in the

bottom story. For this unsymmetric model even the uncoupled mode approxima-
tion predicts the occurrence of distortion in the top story. However, the
mean squared value predicted by the approximation was sometimes found to be
only about 50% of that from exact analysis (Ref. 7).

CONCLUSIONS

Neglecting modal coupling has caused errors of the order of damping
squared for some mean squared responses of the 2DF model considered here.

This error may be particularly significant when the model has modes which

are excited only by modal coupling.

The uncoupling procedure suggested by Penzien et al. is the same as com-

pletely neglecting modal coupling for some models.

The deterministic analysis has also confirmed the importance of modal
coupling.

Equivalent linearization analysis of a yielding structure can lead to a
model with damping so large that modal coupling cannot be ignored without in-—

troducing major errors.
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