SELECTION OF ACCELEROGRAMS AND EVALUATICN OF
RELIABILITY BY STEP-BY-STEP INTEGRATION

Yongqi Chen (I)

SUMMARY

A number of studies, including the compilation of a computer program ge-
nerating artificial strong ground motions, the discussion on effects of ground
motion parameters on elasto-plastic responses of structures, the response ana-
lysis of two buildings undergone the Tangshan earthquake, and the suggestion
on & method of reliability evaluation have been made. Some ideas about how to
select accelerograms for step-by-step integration and how to analyre the re-
sults of the integration are given in this paper.

INTRODUCTION

In more and more countries, the step-by-step integration analysis was
written in seismic design codes to some extent. With the development of com-
puters, its application must be more wide. There are a few detailed reports
on what kind of accelerigrams are more suitable as a standard excitation, and
to which the structural response is very sensitive. In answer to this pro-
blem, several articles have been published in Chinese journals. In this paper,
only main content is presented.

SIMULATED GROUND MOTION AND SAS-FILTERED WHITE NOISE

Considering standard and various applications, a computer program gene-
rating artificial motion has been compiled in following process. A common me-
thod of numerical simulation is used to generate a non-stationary process con-
sisted of multiplying a stationary Gaussian process by an intensity function
of time, I(t), (Fig. 1).

X(t) = I(t%;_‘1A(wk)vSin(w1,;+99k) (1)

2
here, A(Wy ) =45% (W, )aw, Sgis input power spectral density function(PSDF). As
an acceleration response spectrum is determined to be a target spectrum, an ap-
proximate formula derived by M. K. Kaul (Ref. 1) is used to calculate input
PSDF. z
Sg(w) =

C s/ { - (T ()} (2)

mw

In which, { is damping ratio of structure, T is duration, r is exceeding pro-
bability of response spectrum. Some results obtained confirmed the formula,
especially if spectral function is smooth. In regard to the average spetrum

of the 15 motions, which are compatible with the standard acce%erétlon response
spectrum in current design code for building in China, Fig. 2 indicates t@at
they match very well. Subsequent iterations to provide better match of single
record use a linear correction, as follows:

Sg (w)=8g (w)- 8, (w) (target)/Syq (W) (computed) (3)
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The general flow chart of computer program ASEW is shown in Fig. 3:
Various kinds of artificial motion with predetermined duration, different in-
put PSDF (White noise or filtered white noise) or acceleration target spectra
(the iteration is needed or not) can be generated.

Tn order to sstablish identical earthquake loads with (1) acceleration
response spectra in design code, (2) artificial accelerogran for time integra-
tion, (3)PSDF for random analysis,a set of filtered white noise compatible with
standrad acceleration response spectra (SAS-filtered white noise) has been
provided from calculation. Substituting a suite of the parameters from Tablel
into the well-known formula Kanai-Tajimi, we can obtain a formulated PSDF,
filtered white noise. The average response spectra of artificial motions with
those PSDF showed a close coincident with target spectra in main region of pe-
riod (Fig. 4). This SAS-filtered white noise were several fimes utilized in

follows.

The filtered white noise compatible with the response spectra in ATC-3.
were obtained as well.

THE EFFECTS OF STRONG GROUND MOTION ON INELASTIC RESPONSE

The results of study on the relationship existed betwsen the characteris-
tics of ground motion and the structural responses may be utilized not only to
evaluate the potential destructiveness under each accelerogram, but also to
establish a more reasonable criteria for generating standard design earthqua-
kes. By means of the convenient conditions of artificial moticns the study
has been done in time domain and in frequency domain, respectively.

The following main simulated motions are used: (a) band-limited white
noise with some predetermined alteration in PSDF, (b) the S43-filtered white
noise, (c¢) the simulated motions with different prescribed durations, which
all are compatible with the same standard spectrum. In principle, it is in-
tended to ensure that the all characteristics of the motions for comparison
are the same except one parameter. The method using same group of random
phase angles, i.e. when an effect factor is studied, the same phase angles are
adopted to generate different motions for comparison. In the use of this me-
thod, the reduce of size of samples for same function becomes possible.

Tri-linear restoring force models of building, stiffness deteriorating
(Fig. 5), were used in this investigation of both single-degree and multide-
gree of freedom systems (SDOF and MUOF). The calculated results of SDOF were
ploted as mean ductility response spectra with two levels. of strength exp-
ressed by the ratio"\" of yieding strength of structure to maximum peak acce-
leration (here, A=0.2 and A\=0.8, the peak is 0.2g) (Ref. 2). the three typi-
cal shear-type buildings, the structural parameters of which are listed in
Table 2, were analyzed. In every storey of the structures, the yielding in~
terstorey drifts were taken as one third of those calculated in accordance
with response-spectra-based model analysis.

In time domain, the peak acceleration, the duration of excitation, and seve-
ral statistical parameters (the mean, the standard duration, the number of
crossing the zero line, the number of the acceleration pluses exceeding a
given threshold, the number of the pluses areas of which exceeding a thres-
hold) were investigated. It is concluded that:
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1) The effects of the alteration at single point of accelerogran with longer
stationary segment on both elastic and inelastic earthquake response is
insignificant. It is defective for us to take a peak to be an unigue
quantitative criteria. . )

2) 1Insofar as the artificial motions compatible with the same standard res-
ponse spectrum are concerned, longer duration can not be responsitle for
larger inelastic responses, the responses under these motions with diffe-
rent duration are near to each other (Fig. 6). If, thersefore, maximum
inelastic response is only interesting, we can use shorter duration, for
example 10-20 sec.

3) One of the statistical parameters, the number of acceleration pluses with
larger areas is correlative with maximum inelastic response (Table 3 and
Fig. 7).

In frequancy domain, the PSDF with various spectral parameters, as inputs ge-
nerating artificial motions, are investigated, as follows:

1) The motions of a band-limited white noise added a narrow band increament
around the periods 0.3 and 1 sec., respectively, brought larger effect on
elastic responses of structures with period 0.3 and 1 sec., respsctively,
but did small on inelastic structures, although their initial periods
still are 0.3 and 1 sec. (Fig. 8).

2) It is proved that the larger areas of PSDF with same shape are input, so
that the stronger inelastic responses are brought (Fig. 9). In reason,
it should add the implication of area when we say "Frequency content".

3) The increase of the area of the PSDF in lower frequency region, especially
the area of the region in which the frequency is lower than the fundamen-
tal initial frequency of the structure, produced larger increase of
structural responses (Fig. 10-11).

L) Four groups of artificial motions with four different filtered white noi-
se PSDF (Table 4), produced four elastic acceleration response spectra,
inelastic spectra, and the responses of 3 4-storeyed structures as shown
in Fig. 12. They emphasized the previous mentioned results.

It is seen, obviously, that PSDF is the most inportant parameter for
elasto-plastic responses of buildings (Ref. 3), which is an overall parameter
for whole accelerogram.

TWO EXAMPLES UNDERGONE EARTHQUAKE

In order to research the applicability of artificial ground motion com-
patible with response spectra in design and the principle of selection of
reasonable excitations two practical buildings undergone Tangshan earthquake
(1976) were analyzed. Four types of artificial motions and several natural
records are used as input: (I) An ensemble of 20 motions compatible with the
one of standard response spectra in design code in China, (II) The motions,
at the end of the fourth cycle of iteration, their calculated response spe-©-
tra are closely matched, (II) SAS-filtered white noise, the period of its

filter is modified until equating to the predominant period of the site sctl
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of the building, (IV) The motion, the acceleration response spectrum of the
site studied by ZhouXiyuan (Ref. 4) is used as the target.

Two buildings were studied respectively. One is the 52m high 13-storeyed
R/C frame structure in Tianjin (Fig. 13). The part above 6th storey collapsed
during Tangshan earthquake. The interstorey drifts shown in Fig. 14 illustra-
ted that the responses under both the motions I and II are corresponding to
actual (partly collapsed) during earthquake and more closely than the El Cen-
tro record (N-S) (1940).

The other is number 10 Apartment building, a 19-storey prefabricated R/C
frame structure (Fig. 15). The sets of actual records during the Tangshan
earthquake were obtained at basement, 5th, 10th and 17th storey. The inter-
storey drifts calculated from both actual records and artificial motions were
shown in Fig. 16. Here, WOl and W03, being structural responses from the re-
cords at the basament during the Tangshan earthquake after shock are in close
coincidence with the records of the superstructure (Ref. 5). The results show
that the responses of wave IV are the most close to actual records of super-
structure, that of wave II are secondery. Obviously, the closer the spectral
characteristics of an input motion are to that of the site of a building, the
closer the structural responses of this motion are to actual.

EVALUATION OF RELIABILITY

Although it is discouraged to use fewer input motions for structural
analysis, we have to do so regularly in practical engineering due to limited
computer time. It is significant to study for this case. Here, an approx-
mate analytical method of results calculated by time integration for evalua-
tion of reliability of building and decision of needed number of input motions
in the case of small samples has been suggested.

First of all, 100 artificial motions, SAS-filtered white noise, were in-
put 12 SDOF and one 4-degree of freedom systems for time integration. Those
ductility factors as results were checked for probability distribution by K-S
check. The results listed in Table 5 show that the distribution of extreme
value Gumbel can not be denied in the case of both 5% and 10% significance le-
vel, and only in one sample the normal distribution has been denied in the
case of 5% significance level. Therefore, the normal distribution is accep-
table for the study in the case of small samples.

On the basis of normal distribution, the ralationship between the follow-
ing four parameters is conducted. First of them is Reliability index of esti-

mate: -
—_— _L
% oLl )

in which, X is mean of samples, S is deviation of samples, L is threshold.
Similar to it is the reliablity index of ensemble:

1=
Kp= Ll (5)
in which, U is rean of ensemble, ¢ is deviation of ensemble. Corresponding to
Kp is Probability of accepting:

P= P(X<L)=g (Kp) (6)

Defined Confidence level is expressed as

Pe= P(i¥ﬁ's<:ﬂ+Kp0)
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1, 2
n ' 2(m-1)

in which n is the Number of samples.

Only one of the tables listing above-mentioned relationship is shown
(Table 6) due to limited length. Thus, according to the number of sample and
the results of time-integration not only reliability of system can be obtained,
but also it is possible to know if the number of samples is enough to ensure
certain reliability.

CONCLUSION AND SUGGESTION

Following ideas and suggestions are provided to the users of step-by-step
integration and the compiler of design code.

(1) Both natural and artificial ground motions can be used for response ana-
lysis. Although natural records are more true in feature, artificial
ones are more convenient and have meaning of probability. It is possible
to use more widely in future, if it can be developed reasonably.

(2) The simulated motions compatible with standard response spectra in design
code are standardized ones, in use of which only shorter duration is
enough for study on maximum inelastic response. It, therefore, may be
suitable in design buildings.

(3) It is suggested that compiler of design code observe a number of elastic
and inelastic responses of natural and artificial motions; and pick up
the several sets, the responses of that are closer to mean spectra than
others; then provide these motions as inputs in design.

(4) TFor selection of motions, one of the principles, besides the peak of ac-
celerogram must depend on design intensity, should be in correspondance
with the spectral characteristic of input accelerogram to the characte-
ristic of the site of interest (including predominant period and shape
especialy, in the region where the frequency are lower than the funda-
mental initial frequency of the structure).

Precation:

a) It is likely to bring unsafe only to satisfy the correspondance of the fun-
damental period of a building to the predominant period of the site of in-
terest.

b) The method using the ground motion with changed integration time intervals
in order to satisfy the correspondance of the dominant period of the motion
to the predominant period of the site soil, should not be couraged.

(5) Although response envelope is often used to analyze the integration re-

sults, in the deterministic manner, the method based on probability may

have a future. TIt, here, only is a test to put foward the above-mentioned
method to determine the size of samples and reliability of building.
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