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SUMMARY

Simplified analytical methods were proposed for estimating a seismic
response of embankments constructed on horizontally multi-layered grounds.
This response of embankments is obtained by multiplying three functions, a
frequency response function of the embankment on a rigid base; a function
expressing the effect of interaction between the soil layer and the embank-
ment; and the frequency response function of free surface motion. Calculated
results were compared with the solution obtained by the sub-structure method.
Finally a new approach was developed to transfer the effect of multi-layered
ground into the natural frequency and modal damping of embankment resting on
the rigid base.

INTRODUCTION

For many types of embankments constructed on multi-layered ground, the
response magnitude which is induced by earthquake shaking is strongly affect-
ed by the structure of soil layers, the shape and material characteristics of
the embankment. The practical methods proposed so far have neglected the
influence of the ground layer and assumed that the embankment is a triangle
shear beam resting on the rigid base. We here propose simplified analytical
procedures for estimating the response of embankments by considering the
effect of ground rigidity. The first stage is to develop a hybrid analytical
method combining the wave solution of a multi-~layered ground with the finite
element scheme of the embankment as an arbitrary configuration. The second
stage is to propose the method to estimate equivalent natural frequencies and
modal dampings to be used in the mode-superposition analysis. In these
equivalent values, we consider the effects of the rigidity of the underlying
soil layer and the energy dissipation caused by waves radiating into the
half-space.

BASIC EQUATION FOR ELASTIC MEDIA

All the problems considered in this section are two dimensional. The
matrix method developed by Thomson and corrected by Haskell (Ref.l) is wused
to express the response of the multi-layered ground. In this method, the
ground is assumed to have horizontally homogeneous multi-layers overlaying a
homogeneous half-space. The horizontal and vertical displacement components
axand GZ, and stress components %zx and%zz, are written as follows:
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u =r1(k,z,w)expli(kx-wt)} T 2=3(k,z,w)expli (kx-wt) }
u

~r2(k,z w)exp{l(kx—mt)}, Tzz—rq(k z,w) exp{i (kx-wt)} )

in which k is the wave number of x direction, and w is the circular frequency
of the propagating wave, and i=/=] .

Although the expression of Eq.(l) is in the domain of wave number, we
can express the solution in a Cartesian coordinate (x,z) as a superposition
of plane waves as follows.

f(x,z,0)=>=— f f(k,z w) exp(ikx)dk (2)

in which £ is one of functions appearing in Eq.(1). Considering the contin-
uity of displacements and stresses at an interface between two layers, the
following expression is obtained
Rj+1=P5R; (3)

in which subscripts j and (j+1) mean the numbers of the layers counting from
the ground surface, Pj is the transfer matrix of jth layer given by Aki
(Ref.2), and Rj is the motion-stress vector at the top of the jth layer given
by (rllrz,r3,rq)T

The relation given by Eq.(3) is used to find a relatign between  the
motion-stress vector R; and the displacement amplitude ww(p s P 5)T at  the
top of base layer (¥th layer)

Fw=Py_jPy_2+--Pj---PIR] (4)
in which F is glven by Aki (Ref.2), p and s are amplitudes of down going P and
S waves, p and s those of incident waves.

If 7 and ¢ are given, the following expression is obtained from Eq.(4)

among displacement amplitudes y=(r),rz)7T and stress amplitudes T=(ry,ry) T at
ground surface, and incident wave amplitude

U(k,w)=a (ko w) g=5 (k,w)T (k,w) (5)

in which kg is the wave number of incident wave motion.
Substituting Eq.(5) into Eq.(2), we can get

— - 1 o - ,
u(x;w) =u* (x,w) = 5= [, 5 (k,w) T (k,w)exp(ikx)dk 6}
a*(x/w)=j% [:Ag-exp(ikx)dk

If the stress distribution T(x,w) defined by the finite discrete values

O, (n=1,2,--+,m) and interpolating functions £ (x) as follows

m
T(x,w)= L, En(x)0p (7)
The transformation into wave number region of Eq.(7) is
m m
Tk,w)= 3, [0 £, (%)Op-exp(=ikx)dx= T, Ep (k)0 (8)
Substituting Eq.(8) into Eq.(6)
m
4t )=t (x,0) = T G (%) O, G (x,0)=5 Lo SOk, W) Eq () explik)dk  (9)
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HYBRID ANALYSIS OF SOIL STRUCTURE SYSTEMS

The response of soil structure with arbitrary configuration is wusually
calculated by transforming continuous media into a discrete system using such
spatial and time discretization techniques as the finite element method.
However, in most such analysis, it has been necessary to assume that the
underlying soil layer is rigid. This makes it difficult to take into account
the energy dissipation caused by waves radiating into underlying half-space.
To overcome this difficulty, the analytical wave solution of multi-layered
ground is combined with the discrete solution of so0il structure obtained
through the finite element method.

The equation of motion for a soil-structure in frequency domain is
expressed by the finite element method as follows:

[0148}=1£} , [Q]=~w? [M]+iw[C]+[K] (10)

in which § and f are nodal displacement and force vectors, ¥ , ¢ and X are
mass, damping and stiffness matrices. For the purpose of combining the wave
solution of multi-layered ground given Eq.(9), it is necessary to express
Eq.(11) in partitioned form.
[ Q8B 9BS 1q op 1= { fg 1 (11)
QsB 9ss 8s fs

in which subscript B shows the variables at nodal points on the base of the
embankment and subscript S shows the variables of the inner part of the
embankment., Putting the nodal points from 1 to m along the interface between
the embankment and the ground, as shown in Fig.l, and assuming that the
stress representations at these nodal points are O, the nodal displacement
vector 8y is given as follows:

Sg=luxy,w) ulxy,w), - ulxg,w T (12)

where x, (n=1,2,---,m) is the coordinate of the nodal point along the ground
surface. In order to eliminate fg from Eq.(11) by the use of Egs.(12) and
(9), the relationship between nodal force fp and the representation of the
stress magnitude at nodal point ¢ must be given

o=v-1£g (13)
Substituting Egs.(13) and (12) into Eq.(9), we can set

8z=85-Tfp (14)
in which

(SB"‘"{U* (X]_/U.)) /LI* (Xz,w) 0T 'U*(Xm/w) }I F=GV-11 an=gn(xj/w) (15)
Eliminating fg from Eq.(11) by using Eq.(l4),

-1 ~1g#
Ope+T™" Qps; ( S5y - ¢ 7708y (16)
{ Qs Qss ¢ 8g fg
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SIMPLIFIED DYNAMIC ANALYSIS OF EMBANKMENT

We simplify the embankment as a trapezoid shear beam resting on the
layered ground and restrict the vertical displacement of the soil layer to be
zero. Inevitably the stress and displacement at the bottom of the embankment
must have constant values which are independent of coordinate x.  The scat-
tering wave solution in the underlying layered ground , therefore, must
satisfy unrealistic boundary conditions, both of constant displacement and
stress, for a certain region of x coordinate along which the base of the
embankment is connected to the ground. To avoid this difficulty, we consider
only the constant stress condition at the interface between the ground and
the embankment. The mean value of displacement for the region -b<{x<b is,
then, assumed as the displacement at the bottom of the embankment.  The
following relation between the stress Tg on the ground surface and the mean
displacement Uup is obtained by carrying out the similar calculation introd-
uced through the deduction from Eq.(l) to Eq.(6).
ug=u*-D(w) Ty (17)
in which D(w) is a complicated function of frequency. u* is the displacement
of the free surface for the case of no soil structures on the ground.

The displacement of the embankment is given as follows:

_ _ _310h) )}
u=a{Jg (kgz) Y1 (kah) Yq (kpz) (18)
in which kg=w/B, B is the shear wave velocity of the embankment, and

Yn(-) are the Bessel function of the first and second kind, z=hand & mean
the top and bottom of the embankment. From Eq.(18), we also get the
relationship between ug and Tp

uB—'-‘E(UJ)TB (19)
in which
B (w) =pk—J1(kgH) ¥ (kgh) -7 (kgh) ¥ (kgH) (20}

Jo (kgH) ¥ (kgh) =7 | (kgh) Yo (KgH)

Substituting Eq.(19) into Eq.(17), and considering the frequency response
function of the embankment H(w), the response of the embankment up is given
as follows:

up=u*® (W) H () , $(w)=1/{1-E (w)D(w) } (21)

EQUIVALENT MODAL FREQUENCY AND DAMPING

For the design purpose, Eq.(21) is still too complicated to evaluate the
response of the embankment. We here transform the effect of the interaction
given by the function p(w) in Eq.(17) into the equivalent modal frequency and
damping of the embankment resting on the rigid base., For the case of no
input motion ( u*=0 ), the following characteristic equation is deduced from
Eq.(17) and Eq.(19),
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Jy (kpH) Y1 (kgh) =T (kgh) Y1 (kpH)
Jo (kBH) Yy (th) =Jy (th) Yy (kéH}

Uk =-D(w) (22)

Solving the Eq.(22) for w, we get the complex natural frequency Wp
wp=ap+ibp (23)

' Og the other hand, the natural frequency of the embankment with internal
viscosity resting on the rigid base is given as follows:

Wy=1hWoptWosvI-hy2 (24)

in which W0, is the undamped natural frequency and hp is the damping ratio
for the nth mode. FEquating both Egs.(23) and (24), the equivalent undamped
natural frequency Wnegq and damping ratio hpeg are given by

Luneq=¢an2+bn2 ’ hneq= n/1/anZ+an (25)
APPLICATION

The dimension and material properties of the embankment used in the
numerical examples are shown in Fig.2. We consider only the vertically
propagating incident wave. In order to examine the validity of the simpli-
fied analytical method on the accuracy of the results, some numerical compu-
tations are performed for the embankment resting on the two layered ground as
shown in Fig.3. The shear wave velocity of each layer is also given in the
figure. The full 1line is the result of two dimensional analysis for both
horizontal and vertical ( with o sign ) displacements at the crest of the
embankment. The chain line is obtained by the analysis restricting the
vertical displacement of the whole system to be zero. The second peak of the
horizontal response in two dimensional analysis is not followed by the one
dimensional analysis because this peak is caused by resonance for the verti-
cal movement. Note that even the simplified method ( broken line ) yields a
good result especially for lower frequency. This is a useful tool with which
to make dynamic response analysis of embankment resting on the layered
ground.

Discrete Fourier analysis and synthesis were used to examine the
efficiency of the simplified method on the seismic response to the transient
incident wave pattern. The incident motion used in the analysis is the NS
component of the accelerogram recorded at El Centro ( 1940 ). The time
history of the response at the crest is shown in Fig.4 for both the one
dimensional and the simplified method. The acceleration wave forms obtained
by both methods do not differ much although the amplitude calculated by the
simplified method is a bit larger.

The rigidity of the base layer is one of the predominant parameters to
control the response magnitude. The results are shown in Fig.5. The re-
sponse magnitude at the crest of the embankment becomes larger as the rigidi-
ty of the base layer increases.

The effect of ground structures on the response is shown in Fig.6. This
result is also calculated by the one dimensional analysis. The response of
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the embankment is strongly affected by ground structures, especially, by the
position of the layer with the lowest shear wave velocity and its thickness.

The equivalent natural frequency and damping are shown in Figs.7 and 8
for the embankment resting on the two layered ground. In Fig.7 natural fre-
quencies up to the 4th mode are shown as functions of shear wave velocity of
the surface layer. The shear wave velocity of the base layer is four times
that of the surface layer. The horizontal lines are natural frequencies of
the embankment resting on the rigid base. The sloping lines are those of the
ground. Around the region, in which the horizontal and sloping lines inter-
sect, one of the equivalent natural frequencies appear in the frequency
region lower than both of the lines and the other in the higher frequency
region. As the rigidity of the ground increases, the equivalent natural
frequency approaches that of the embankment resting on the rigid base. The
equivalent damping dose not have the systematic tendency of the equivalent
natural frequency. In the region where the equivalent natural frequency
approaches that of the ground, the equivalent damping becomes very large. If
the ground is the homogeneous half-space, the equivalent modal damping shows
a proportional tendency to the impedance ratio between the embankment and the
ground. The relation between the modal damping and the impedance ratio is
shown in Fig.9.

Finally the modal superposition analysis was done to validate the
equivalent natural frequency and damping for response analysis of the
embankment. The results shown in Fig.l0 assure the wusefulness of the
equivalent technique proposed above.

CONCLUSION

The simplified analytical method to calculate the response of the soil-
structure resting on the layered ground were proposed and applied it some
numerical examples. The principal results and conclusions of the present
study are

(1) The hybrid analytical procedure combining the wave solution of the
layered ground with discrete solution obtained by the finite element method
were programed to get the exact numerical solution. And this was applied to
checking the results obtained by the proposed simplified method.

(2) Several numerical results show that the response of the embankment
is strongly affected by the ground structures. Especially, the position of
the layer with the lowest shear velocity, its thickness, and the rigidity of
the base layer are the most predominant parameters which control the response
magnitude.

(3) To use the modal superposition method for estimating the response
magnitude, the effect of the interaction between soil-structure and layered
ground was transformed into the internal damping and rigidity of the
jtructure by proposing the concept of the equivalent natural frequency and

amping.
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