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SUMMARY

This paper presents a finite element procedure to evaluate the seismic re-
sponse of earth dams assuming the material properties as random. The approach
is based on the complex response method and makes use of the theory of pertur-
bations to implicity account for the uncertainties in the shear moduli and
damping ratios. Through comparisons with Monte Carlo-type simulations, it is
shown that the proposed method is reliable and relatively inexpensive for prac
tical applications.

INTRODUCTION

The seismic analysis of earth and rockfill dams by means of the finite ele
ment method has been thouroughly investigated in the past. However, these
analyses have considered the dynamic characteristics of the materials as de-
terministic, using the mean value of the parameters in the computations.

There exists a large amount of results of laboratory and field evaluations
of moduli and dampings of cohesive and granular materials showing a significant
scatter. Furthermore, during the construction of an earth dam the material
placement and environmental conditions may vary and, consequently, affect the
dynamic (as well as static) characteristics of the constitutive materials.
Additionally, time effects under sustained loading cannot be accurately quan-
tified. All this leads to the conclusion that the commonly used deterministic
assumption for dynamic soil properties is hardly tenable. A much better hy-
pothesis would be to treat them as random variables.

A method based on the theory of perturbations which takes into account the
uncertainties in the shear modulus and damping ratio of the constitutive mate
rials is presented in this paper. Calculations by this method are compared
with Monte Carlo-type simulations; the results clearly show the suitability of
the proposed method.

METHOD OF ANALYSIS

The handling of the material uncertainties is mnot straightforward. One
possible way of solving the problem would be to use Monte Carlo methods. For
example, if the shear moduli, G, of the constitutive materials of the dam are
known to have a wide scatter and if their probability distributions are known,
the analysis problem may be solved by generating samples of G values consistent
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with their probability laws, and the analysis performed for each group of val-
ues of G generated. The results can then be analyzed to produce the desired
statistical response quantities. This method involves a great number of numer
ical computations and hence its practical use is limited. An alternate proce-
dure based on perturbation techniques (Ref. 1) coupled with numerical simula-
tions is presented in this section. This method retains the formalism of the
Monte Carlo method but eliminates the burden of solving the full problem for
each set of soil parameter values.

The equation of motion for undamped systems can be written in the frequen
cy domain as

(K - w2 M) {U} =-{m¥Y (1)
r r r

where K and M are the stiffness and mass matrices, respectively; {U}y are the
amplitudes of the relative displacements of the dam with respect to the rigid
base, for each frecuency wp, r = 0, 1, 2,..., of the input motion Yp; and {m}
is a vector related to M and the input motion direction. The material damping,
B, is introduced in K using complex shear moduli: G% = G exp (2iB), where G is
the shear modulus and i = V-1

The material properties involved in the equation of motion are the shear
modulus, damping ratio, and unit weight. Statistical evaluation (Ref. 2) of
laboratory and field determinations of shear moduli and damping ratios have
shown that both parameters should be considered as random variables. On the
other hand, the unit weight may be considered deterministic because its scatter
is negligeable compared to that of the modulus and damping. Thus only the
K matrix was considered random.

Using peturbation techniques in Eq 1, and grouping the terms of equal order
the following equations are obtained (Refs 2 and 3):

. ) _ e
Zero order: (X - wr) {Uo}r = - {m} Y (2)

; . 2 - ,
First order: (K - w? M) {Ul}r = -0 {Uo}r (3)

where {U,} and {Uy} are the unperturbed and perturbed solutions, respectively;
and Q is the first order perturbation stiffness matrix.

It is very interesting to point out that Eqs 2 and 3 are identical except
for the loading vector. Henceforth the perturbed solution of the problem can
be obtained in a straightforward manner by solving Eq 2 for unitary loading
and then multiplying Eqs 2 and 3 by their corresponding loading vectors, the

values of {Uylp and {U1}, are computed. Assuming small perturbations, the
total solution is

{U}r = {Uo}r + {Ul}r = (-1 + L;l Q) L;l {m} ?r (4)

1

- 21
where I is the unitary matrix; and L = = (K - wi M)
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In order to achieve the probabilistic solution, Eq 4 is used repeatedly
in a simulation-type approach: a sample of Q matrices consistent with its prob
ality distribution is generated and by means of Eq 4 a sample of respomses is
calculated. This procedure is equivalent to the Monte Carlo method; however,
it does not require solving the equation of motion for each value of Q because
Eq 4 involves only products between the unitary deterministic solution, L~1,
and the probabilistic stiffness matrix, Q. Accordingly, the numerical simula-
tion can be performed adventageously. Once the response sample is obtained it
is analyzed to produce the desired statistical response quantities.

The matrix Q is made up with complex shear moduli computed by means of the
following expression (Ref. 2)

G* = G* +aGH (5)

where AG%: = g% (R, . CV_, + ZiBOR . CV)

o G G B B

here Gf and Bo are the unperturbed modulus and damping ratio, respectively, and
are usually obtained from a laboratory test program; Rg and Rg are normally
(N(0, 1)) distributed random numbers; and CVg and CVg are the modulus and damp
ing coefficients of variation, respetively. The values of the variation coef-
ficients may be calculated from statistical evaluation of the results yielded
by soil testing programs.

From the statistical studies of the response sample uncertainty bands may
be computed. Thus the probabilistic response, {U} , will be within the follow
ing limits: v

{ud, -as<{ul <{u} +as (6)

here S is the standard deviation, and o is a parameter which controls the
width of the response uncertainty band (i. e. o = 1 corresponds to 687% proba-
bility interval).

The above theory was incorporated into a new computer code, DARE (Ref. 4),
which is a plane-strain finite element program. The strain-dependent nature
of the material characteristics is considered by means of an iterative proce—
dure.

EVALUATION OF THE ANALYSIS METHOD

In order to validate the proposed probabilistic method of analysis, paral-
lel computations were performed by the probabilistic approach and the Monte
Carlo method, for the wedge-shaped dam shown in fig. 1. The dam was assumed
homogeneous and the dynamic characteristics of the soil non-linear as shown in
Fig 2. The uncertainly bands for G and B used in the analyses are depicted in
Fig 2 and the response spectrum of the input motion is presented in Fig 3.

To generate the seismic response sample, 20 sets of material properties

(G and B) were produced assuming that the scatter around the mean values of G
and B included in Fig 2a conforms with a normal probability distributionhaving
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:oefficients of variation as indicated in Fig 2b. Then 20 deterministic anal
rses (Monte Carlo simulation) were carried out using program DARE. The re-
sults were then evaluated statistically to produce mean values and confidence
limits. Similarly, using the theory proposed above and computer program DARE,
1 set of 20 seismic responses was generated and the corresponding mean values
ind confidence limits evaluated. Comparisons between the acceleration res-—
>onse spectra calculated with both approaches at points A and B (see Fig 1)
are shown in Figs 4 to 7. The accuracy of the probabilistic method is re-
narkable throughout the frequency range for both the mean spectral values and
their corresponding uncertainty limits.

EFFECT OF CVG AND CVB

The width of the confidence bands of the response depends maily upon the
degree of uncertainty in the material properties of the dam. From Eq 5 it
may be concluded that the effect of CVp is about one order to magnitude smaller
than that of CVg, for typical values of soil damping ratios (8 to 15%). Hence,
form the practical point of view it would suffice to consider the mean of the
damping-shear strain curve.

To study the effect of CVg the response of the triangular dam was computed
at its crest for a number of constant values of CVg and keeping (Vg equal to
zero. The mean response spectrum as well as the upper limit (¢ = 1) of the
response spectra correspondign to CVg = 20 and 40% are shown in Fig 8. As it
was expected, the width of the response uncertainty band increases with (V.
It seems that at least for the studied case, the effect of CVpn is to amplify
the response by approximately a constant all spectral ordinates. However,
this may not be the case for zoned dams or for other geometries.

NUMBER OF EQUIVALENT CYCLES

In the seismic analysis of earth dams to evaluate liquefaction potential
or earthquake~induced deformations it is required to compute the number of
equivalent series of uniform stress cycles (Ref. 5). The conventional method
(Ref. 6) which is based on a weighing procedure has the disadvantage that it
requires a considerable number of steps to calculate the number of uniform
stress cycles, N. Instead, an expedite method which permits computation of
N in each element of the finite element mesh is presented below. The approach
is based on energy concepts. The energy, I, contained in a shear stress-time
history, t(t), of duration T can be computed by means of

T 2
E= % | t(t)] At (7
t=0

Similarly, the energy, e, contained in N uniform stress cycles of amplitu
de t is B
e
= N (Te)z

2

(8)
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From Eqs 7 and 8 it is obtained the relation to calculate the N stress cy-
cles of amplitude T

T 2
2 | te)| at
t=0
N =
> (9
(t)
e

This approximation to evaluate N is very attractive because it can be used
in the probabilistic approach to evaluate the effect of CVg on N and obtain
the corresponding uncertainty bands. This type of information is very helpful
in evaluating liquefaction potential of dams as was proved in a recent study
(Ref. 7).

CONCLUSIONS

It is widely aknowledged that considerable judgement is required to deter-
mine representative soil characteristics and that it is usually necessary to
consider ranges of properties for analyses purposes. A new procedure, which
includes such uncertainties, has been developed for evaluating the seismic re-
sponse of earth dams by combining elements from the theory of perturbatiomns,
the finite element method, and the complex response method.

Results obtained by the probabilistic approach are in excellent agreement
with corresponding results by the Monte Carlo method and have the added advan-
tage that the computer costs are a small fraction of those generated by the
Monte Carlo method. Since the probabilistic method provides confidence limits
on all results it is potentially more useful for the design of earth and rock-
fill dams.
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Fig 1. Triangular Dam Used in the analyses
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Fig 3. Response spectrum of input motion
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Fig 4. Comparison between Monte Carlo and probabilistic methods.
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Fig 6. Comparison between Monte Carlo and probabilistic methods.
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