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SUMMARY

This paper 1is concerned with two-dimensional dynamic
analysis of saturated sand deposits considering a lique-
faction phenomenon. An elasto-plastic constitutive equation
of sand and the Biot's theory of two-phase mixture are used.
Two simplified methods of liquefaction analysis are proposed
in order to introduce the effective stress concept in soil
mechanics. As a numerical application, two-dimensional
behavior of saturated sand deposits are analyzed under the
plane strain condition.

INTRODUCTION

Recently, many methods of effective stress liquefaction
analysis have been proposed. But, almost all of these
methods deal with one-dimensional behavior of ground during
earthquakes. On the other hand, it becomes clarified that it
is necessary to develop a method of two-dimensional lique-
faction analysis, in relation to prediction of the behavior
of embankment near river and/or the interaction between soil
and pipeline under the ground. This paper is concerned with
the two-dimensional dynamic analysis procedure of ground
considering a liquefaction phenomenon.

According to the reports on Miyagi-ken-oki earthquake
1978 in Japan, the liquefaction seems to greatly influences
the behavior of embankement near river. As to the consti-
tutive equation of sand, one of the authors has already
proposed the elasto-plastic constitutive equation, which is
effective under cyclic loads, based the elasto-plasticity
theory and the concept of bounding surface.

The proposed equations coincide with the modified
Christian's method of consolidation when the acceleration
term is neglected. Therefore, it includes the generation and
dissipation of pore water pressure due to seepage flow.
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EQUATION OF MOTION OF TWO-PHASE MIXTURE
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Eguation of motion for a two-phase mixture 4),5) can be given
by
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where U?j is the partial stress tensor, V? ig a componont of

velocity vector, % is a component of bedy force vector, [t
i i
is a component of interaction force vector, F® is a partial
mass density, x. is a coordinate and t is a Uime.
i

Total stress is defined by
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The following definition of effective stress tensor of s

i
valid only when soil particle {(not the soil skelton) and
pore fluid are incompressible. ?)
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where n is a porosity and  is a pore fluld pressure.
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Acording to Ishihara §) n. is given by
i
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where k is a permeability coefficient and pfg is the weight
of water per unit volume.

From an economic and convienient point of view, it is not szo
effective to directly apply Egs.(1l) and (2) to liguefaction
analysis. In this paper, we will present the following
approximated and simplified procedures.

FORMULATION I




when we can assume that the difference between the accel-
eration of solid phase and that of fluid phase is small,
Egs. (1) and (2) becomes
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where 5 = 5% 4+ 5f and bi=bi=b
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Formulation I coincides with the U(displacement of solid
phase)—g(pore water pressure) form proposed by Zienkiewicz
et al.’ only when water compressibility is zero. Zienki-
ewicz et al. applied the effective stress concept to the
mixture constituted by compressible fluid and solid. They
considered that the effective stress concept and compress-
ibility of constituents is independent. On the contrary, the
authors consider that the effective stress concept in the
s0il mechanics is equivalent to the incompressibility of
constituents of mixtures.

Next, we will derive the more simplified form Formulation
Il.

FORMULATION II

It is assumed that the Eqg.(8) governs the balance of linear
momentum of soil as a whole. By neglecting the acceleration
term of fluid phase, Eq.(2) becomes
6af
ij . .
ij Hi (10)

Ec{. (10) is a simple extention of one dimensional equation of
seepage flow(Darcy's law). In this formulation, E¢s.(8) and
(10) must be solved simultaneously. Almost all of the
methods of one-dimensional ligquefaction analysis that have
been proposed until now are corresponding to Formulation II.

LIQUEFACTION ANALYSIS BY FINITE ELEMENT METHOD
Following the above Formulation II, we will discretize the

governing equations by finite element method and finite
difference method.
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The next relation is obtained.

(M1{a8} + [KI{au} + {®,} Au, = {aF_} (11)
(4] = J[N]TE[N]dv (12)  [K] = J[B]T[D][B]dv (13)
v v
{x,} = J{Bv}dv (14) {AFe} . J[N]T{AFb}dv-k J[N]T{ATS}ds
v v s (15)

Next, we will set out to obtain the formulation of Eg.(10).
When scil particle and pore fluid are incompressible, the
following relati?n can be reduced from the equation of
balance of mass>’.
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Substituting eqg.(31¢) into Eq.(10), the following equation is
obtained.

R = - £ __ W (17)

As de,,=Avr Eq.(17) becomes
kk
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In the formulation of the right hand side of Eg.(18),
forward finite difference scheme is used.

Combining Egs.(1ll) and (18), and considering the viscous

boundary and the energy transmitting through the base layer,
the generalized equation of motion for the element is given

by
M1 |{a&} | + [C) |{atq} | + [[R] {Kv} {au} | = {AFe} (19)

{0} {o] (&, 17 {o} | [{aw }| |«

where matrix [C] is determined by the viscous boundary
condition and the elastic constants of base rock.
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CONSTITUTIVE EQUATION OF sanpl’r8)

The boundary surface defines the boundary between the
normally consolidated region(fbgo) and the overconsolidated

region(fb<0) is given by
*

fb= n (0) * M;ln(oﬁ/oﬁe) =0 - (20)

where cﬁ is mean effective stress, Oﬁe is preconsolidation

*

pressure and n is a stress parameter representing the

(0)
effective of anisotropic consolidation introduced by
Sekiguchi and Ohtag), and is defined by
—% { * 1
= —_nN* * n% 2
in which
* = ' * = '
"ty =81/ %m "1500)7%15(0)/m(0) (22)
where nf, is the value of n*, at the end of anisotropic
ij(0) ij

consolidation and s, ., is a component of deviatoric stress
1]

1
¥on¥2
1J 13
maximum volumetric compression takes place due to shear.

tensor. M; in Eq.(20) is the value of (n when the

The plastic strain increment dsgj is determined by the

following non-associated flow rule.

3 f
deP. = p —Bar (23)
ij Boij

where f_ is a plastic potential function and f is a plastic
yield function.

The plastic potential function fp is assumed to be given by
- ~
= * 1 ] -
fp n + M lp(om /Um(n)) 0 ’ (24)
In this equation, ﬁ* is a relative stress parameter and is
given by

[

* * . = :
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On(n) IP Eg.(24) and "i5(n) in Eg.(25) are e values of o

* .
and nij at the n-th time turning over state of loading

direction during cyclic loading. While the parameter M* in
Eqg.(24) is a variable which is defined as

Tk — — * ' 1
M*—- n/ ln(om/cme) (26)
* * * 1
3 3 —_ 2
in which n —-(nijnij) (27)

On the other hand, the yield function is assumed to be given
by
—-% :
f =n (28)
The hardening rule is given by the following hyperbolic
curve. : :
rn, )
—% n n ‘ :
yo= £ ) (29)
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ip which §* is a strain hardening parameter corresponding to
n . and is defined by '
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in Eq.(29) is the value of n”* at the n-th time turning

(30)
*
T(n)

point during the cyclic loading.

Total strain increment is obtained, taking into account of
elastic components of strain increment.as follows.

= geP e
deij dsij-+d€ij . (31)
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NUMERICAL EXAMPLES.

Finite element mesh is shown in Fig.l. The 4-node isoparamet-
ric element is used. Consistent mass matrix 1is employed in
the formulation of mass matrix. Calculation 1is carried out
under the plane strain condition. '

The upward incident wave is assumed to be sinosoidal and
is given by . . ‘
u; =A;sin( 2rfy ) sin( 2wf, ) : (33)

u, : acceleration, A0=0.l (m/sec), . f1=0.5, f2=0.05



Eg.(ll) is directly integrated by Wilson's implicit method

with 0=1.4, and At(time interval) is 0.0025 sec. The
approximation of the right hand side of Eq.(17) in detail is
3)

explained by Akai and Tamura-
The parameters used in calculation are 1listed in Table 1.

Figs.2 and 4 show the pore water pressure-time profile. The
excess pore water pressure increases during the cyclic load-
ing. Shown in Fig.3 that the mean effective stress
decreases. Comparing Figs.2 and 4, it is seen that the
developed excess pore water pressure is greatly influenced
by the coefficient of permeability.
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Table 1
Parameters
" 0.003
M* 1.11
m
M% 1.28
Go 2.8x10°% kgf/m?
G' 800
(S 1.0
Kq 0.5
o 185 kg/m*/sec?
(Density)
PB 185 kg/m*/sec?

(Density of
base rock)
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