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SUMMARY

In this paper, the theoretical analysis of seismic ground motions,
especially, concerning diffracted waves in a dipping layer is discussed. To
thisz problem, the boundary integral equation (BIE) method is applied. The
main advantage in the BIE formulation presented here is feasibility to solve
the diffracted wave field, while it is known that the diffracted waves in a
dipping layer can not be exactly evaluated by means of the ray theory (Refs. 1
and 2). By comparing results obtained by the BIE method with those of the ray
theory, it is shown that the diffracted waves have much effect on seismic
ground motions, and some numerical examples are presented.

INTRODUCTION

Various geological structures have been well known to affect seismic
ground motions . In particular, horizontally wvaried geological structures,
which consist of irregular surfaces and interfaces, give rise to locally
distributed earthquake disasters. A dipping layer is one of such structures
and it represents the model of continental boundary region, or sediment-filled

vally and bed rock system.

Up to now, several numerical methods, such as FEM, FDM, Aki-Larner's
method, and ray theory ete., have been developed to investigate the effect of
complicated geological structures on seismic motions (Ref. 3). Concerning the
reflected waves in a dipping layer, Ishii and Ellis (Refs. 1 and 2) proposed
the ray theory to solve this problem by taking account of reflections of body
waves. However, it is pointed out that no diffracted wave could be evaluated
by means of their method.

In this paper, the boundary integral equation (BIE) method is employed to
analyze the same problems as in Refs. 1 and 2, because the BIE method has
analytical feasibility for wave propagation problems in a half space (Refs. 4
and 3). The BIE method presented here has the distinctive feature in respect
that the BIE formulation is applied to the diffracted wave field only, not to
total wave fleld(Refs. 4 and 5). In this case, computed results by the BIE
method involve not only reflected waves but also diffracted waves. And they
are compared with results obtained by the ray theory to clarify the effect of

the diffracted waves on seismic ground motions.

STATEMENT OF THE PROBLEM

Fig. 1 shows the dipping layer model to be analyzed. The domains D™ and
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fig. 1 The dipping layer model to be analyzed.

pt denote a dipping layer and & bed rock, respectively. Both domains are
isotropic, homogeneous, linear elastic, and in the plane strain state. The

harmonic plane wave ' is incident om the boundaries M and 9% with an
incident angle o. This problem reduces to the steady state two-dimensional

one, then the governing equations become, in case of no body force

L(CT,C7,p s )u(X,0)+wu(X,w)=0  in D~ (L

L(ct,ch, ot ) uX, wrwtu(X,w)=0  in pF (2)
where L is the differential operator defined as

L(CL,Crnp3 ) E{pg\g?{-.zzu(cf;—c?{:)vv-) for P=5V problems (1)

’ pesv for SH problems (4)

and u, Cy, Cp, p and w are displacement  components, longitudinal wave
velocity, transverse wave velosity, mass density, and angular frequency,
respectively. 4lso note that the displacement components correspond to the
following quantities,

u=(uy,uy) for P-8V problems (5)

u= ug for SH problems. (6)
The boundary conditions on 3D~ and 8D*, and the continuity conditions on 3M
are prescribed in the following equations,

n
€ (x,w)EL(Cy,,Cp,0; ulx,w)=0 on D~ and apt (7
lim u(X,w)=lim u(X,w) and 1im £(X,w)=lim c(X,u) on M (8)
X in b X in p* X dn p” X tnnt
+¥ on M +x on M X% on oM + % on Y
where

. p((CF-203)nV-+CE(2(n-V)L4mu¥x)) for P-SV problems  (9)
I<CLyC‘[‘:p;a) ﬁ{ p y
pCin-v for SH problems (10)

and m denotes & unit normal on each boundary as shown in Fig. 1.
RAY THEORY

The plane wave incident on the boundary 3M reflects several times in the
dipping layer D™ and then propagates downward without further collision with
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any boundaries. An example of rays
is shown in Fig. 2. Since all
reflected and transmitted waves from
the boundaries 3p~, 3% and aM are
calculated as  plane waves, the
displacement u* based on the ray
theory can be easily obtained as the
sum of each plane wave, The detail
discussion on the ray theory is
referred to Refs. 1 and 2.

As Ishii and Ellis pointed out, Fig. 2 An example of multiple reflection
however, the displacement u* is not in a dipping layer (SH wave).
an exact solutlon for a dipping layer
problem and it has several discontinuities along rays propagating without any
collisions (for example, (u¥)j, ¥y, *)y and (@*), in Fig. 2). They
also suggested that diffracted waves are generated to cancel discontinuities
in the displacement components .

BIE FORMULATION

As mentiened in the previous section, the displacement u* obtained by the
ray theory has several discontinuities which should be canceled by the
diffracted wave field ud. Here, as shown in Fig. 3, we assume that there
exist {(N'-1') and (N~1) discontinuities (referred to as discontinuity planes
9515 A8y -+, 08 and 981, 8Sp,++,884.; respectively) in the domain
I~ and DY, and slso assume that the domains D~ and DV are divided into N' and
N subdomaing (referred to as subdomains Dy, Dy'y++«,Dy and Dy, Dy,-+,Dy,
respectively) by each discontinuity plane.

307 (38y) AR

Fig. 3 The subdomains divided by discontinuities
baged on the ray theory.

First, we consider the BIE formulation in the domain D*. The total
digsplacement uy in Dy are assumed to be expressed as the sum of the computed
displacement uf,' by the ray theory and the diffracted field uﬁ, i.e.,

ukmﬁ-huﬁ in Dk' (ll)
Since the diffracted wave field u& satisfies the radiation and regularity
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conditions at infinity (Ref. 6), the following integral equations for uﬁ are

obtained from the reciprocal theorem, as follows:

Ju (U (X, y) el (y,w)-TT (X, y)uf (5,0) J¢ 9+I[U+(X,y)tﬂ(y,w) -1 (X,y)ud (v, w) Jds

uﬁ(x w) in Dy (1?.&)
= { u%(x w)/2 on 98k~ and 38y (k=1,2,+7-,N) (12.b)
0 in (D)e [([71{)‘— denotes the complement of I)k} (12.¢)

where tk(y,w) ~'J.‘(Cx,(f§,p ,d)uk(y,m) and T*‘(X,y) gih (X,y)'ly(f?‘ L;m ,«3 ).
The fundamental solution yt(x y) in a steady state is well known tO have the
following form

i (13, 4 .
TACE [n(,(wr)u yvczw(kf}r)»nn(k“{‘r))} (1)

UtX,Y) = for P=sV problems
7—-%“[:)41(5)(1( ) for S problems (14)

where r=|X~Y|, kf and k} are the Jvave numbers of the longitudinal and the
transverse waves in the domain p¥, and 11(0“ is the zeroth order Hankel functloen
of the first kind. If all of N equations (12) are summed up, then we have

-/ (v *x,y)ed (v, w>~r+<x,y>u1<y,m>ldwf[u*(x,yn (y ) -TF (X, y)u (y ) a8

t_}llafﬁ[ll*“(xm){ti‘(y,w)—tﬁH(y,w)M (x,y){ui(y,u)“u‘éﬂ(y,m)}}ds&

w (x w) dn By (ksl,e<-,N) (15,0)
{ (gﬁ(x w)%ugﬂ x,w))/2 on ')Sk (kel, =« N=1) (15.0)
1(%,w) /2 “on 3M(38,), uN(x,w)/Z on w"*(a.:h), 0 in (UHYY, (1%.¢,d,e)

Taking account of the continuity conditions on d8y:

ety ) and Epetpgy  on 38, (16)
i.e.,

uflafymuf ~uf and edeed ek el onoas, (17)
and the boundary condition on §8y:

t=0 on 35y (18)
i.e.,

t8=0 on 38y (From ty=0 on %) (19)

equation (15) reduces to the following equation:

-fw*cx,yn‘%cy,w>~r+<x,y>u‘{<y,w>stu/;r*"(x.y)ui(y,w;ds

N~ 1
+k_ 0T X,y) (e, (7 0)-tfi(y,0) 1-TH(R,y) {ofq) Or ) -uf (y ,w) } )ds
ukéx »w)  in {J]z (k=l,+~«,N) {20.a)
{ (it (x,w)hudy ) (x,0)) /2 on 38y (=1, - +2 N=1) (20.0)

uf(x,0)/2 on 3M(28,), uﬂ(x,w)/l on au*(asﬁ), 0 in (M€, (20.c,d,8)
Similarly, the BIE in the domain D~ is obtained as follows:
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FACH <X’Y)“‘f'<7=w>d5§{{{“" Xy ed(y,0)-1- &, ) ud(y,0) 1ds

NED - %
Iér{sE}’ ) e (7, 0)~th(y ) 1T (K,y) fafiy 1y, w) ~ufiy , 0) 1 1dS

uff(X,w) in Dy (KD, --- M) )
= ‘{ (fo(x, w)Hufyy 1(x,0))/2 on 35, (KSI',+ -+, N-1Y §2i;§§
uix,w)/2 on T(3s,), ug&x,w)/Z on M(3S), O in (D7)C. (21.c,d,e)

By usging the continuity conditions (8) on 9M:

d * d * d * = *
uNﬁuNFul+u1 and tNﬁtw t§+tl on oM (22)
i.e.,
wdrud  and tderd on 8 (from u¥=0* and t*=t¥ on W) 23
NTTL NC Tl N L N1l ©

equatéons (20) and (21) constitute the coupled BIE with the unknowns ti(t%J,
u?(u MR uﬁ and uj on boundaries M, 3Dt and 3D, These formulatioms also
provige a theoretical basis to solve the diffracted wave problem in a dipping
layer by means of the BIE method.

Equations (20) and (21) were solved numerically to obtain the wave field
u in the domains and on the boundaries. In regard to the numerical procedure
employed here, some remarks are described as follows:

) Since the diffracted wave field ud satisfies the radiation and
regularity conditions at infinity, the contribution of the boundary integral
along the path far from origin Q0 is expected to - vanish. Therefore,
senl~infinite integrals /7+ds on an~, o0t and M in equatioms (20) and (21)
were truncated and substituted by finite integrals Qf-ds, after evaluating the
effective boundary length L so that the truncation error was made sufficiently
small.

(2) Semi-infinite integrals on 95y and IS were evaluated by use of
Gaussian and Laguerre numerical integration formulae (Ref. 7).

(3) We paid no specilal care to the singularity in the traction component at
origin 0, since it is known that the effect of the singularity on the
displacement component is negligible except at the vicinity of origin.

Hitherto, we have discussed the analysis in the steady state, that 1s, in
the frequency domain. Once the displacement wu(X,w) in frequency domain is
determined, we can obtain the displacement u(X,t) in time domain by applying
the inverse Fourier transform as follows:

u(x,t)wl/(2ﬂ)£:u(x,w)exp(—iwt)dw. (24)

In thig calculation, we employed the fast Fourier transform (FFT). A Ricker
wavelet (Ref. 8) was used as an incident pulse .

RESULTS AND DISCUSSION

We show some numerical examples and discuss the effect of diffracted wave

on surface ground motions.

Fig. &4 shows one of numerical examples, which is the transient displace-
ment on free surface for an incident SH wave. The parameters in this
calculation are as follows: dip angle 94=45°, incident angle a=134°, velocity
ratio CT/CE=2.O and massg density ratio p+/p—=l.0' Fig. 4 (a) represents the
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(a) (b)

Fig. 4 The transient displacement on free surface for an incident SH
wave for the parameters: 04=459, am134%, ¢1/¢7=2.0 and ot/p=l.0.
((a) the BIE method and (b) the ray theory)

surface displacement computed e
by the BIE method, and Fig. 4
(b) by the ray theory. In
these figures, the oblique
axes denote the normalized
time t/t., where t; is
referred to the peak period in
a Ricker wavelet(Ref. 8), and
the abscissas denote the
normalized position X,/}, ,
where A, 1is defined as
Ap=C7itp.  And Fig. 5 shows the
ray dlagram corresponding to
Fig. 4. In this case, since a
large discontinuity (evaluated Fig. 5 The ray diagram (solid line) and the
value=l.33, which is relative to discontinuity plane (dashed line) for
the unit amplitude of incident the same parameters as in Fig. 4.
wave ) in the displacement

component based on the ray theory exists near the dipping boundary 3M as shown
in Fig.5, it is considered that the refracted wave 1is induced by the
diffracted wave along Ehe discontinuity plane and then propagates with the
eritical angle ¢,=cos™ (C?/C}) from the boundary M into the domain D~ as

diaplavement
discontinuizy-1 434
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shown in Fig. 6. Consequent-
ly, we conclude that the
discrepancy between Fig. 4 (a)

and (b) results from the
above-mentioned refracted
wave.

It is also observed that
the diffracted waves have much
effect on the displacement on
free surface 307, if a large
discontinuity based on the ray
theory exists close to the free
surface 3D” . As an example,

Fig. 6 The refracted wave induced
by diffracted wave.

T T
2.37 1.37 0.37

X/

Fig. 7 The amplitude of displacement on the free surface for harmonic
incident SH waves. The solid and dashed curves show the result
computed by the BIE method and that by the ray theory, respectively.

(84=30°, a=122°, C}¥/C7=2.0 and p*/p~=1.0)

the displacement on the free

surface for harmonic dincident - -
SH wave is shown in Fig. 7,

where the solid and dashed

curves show the result -

computed by the BIE method and
that by the ray theory,
respectively. And its ray
diagram is shown in Fig. 8.
The parameters used are
6q=30°%, «=122°, Cf/c7=2.0 and
p+/p‘=1,0. In Fig. 7, the
ordinate shows the amplitude
relative to the incident
amplitude, and the abscissa
shows the normalized position
Xl/k , where ) denotes the incident wave length. It is found that the
difference between solutions obtained by the BIE method and by the ray theory
results from the diffracted wave itself along the discontinuity near the

displacement
discontinuity=1.333

Fig. 8 The ray diagram(solid line) and
the discontinuity plane(dashed line)
for the same parameters as in Fig. 7.
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surface 3D .

From the above two examples (Figs. 4 and 7), it is noted that the surface
ground motions are influenced not only by the diffracted waves themselves but
also by the refracted waves induced by the diffracted ones.

CONCLUDING REMARKS

The BIE mehtod was employed to analyze the selsmic ground motions for a
dipping layer. Since the BIE presented in this paper was formulated for
diffracted waves, which are excluded in the solution on the basis of the ray
theory, a comparison between results obtained by the BIE method and that of
the ray theory clarified characteristics of diffracted waves. It was proved

from some numerical examples that the diffracted waves played an important
role in obtaining the surface ground motions, if a large discontinuity based

on the ray theory was located near both boundaries of a dipping layer.

Although numerical examples for SH waves were showed here, a similar
discussion can be made easily with respect to P-SV waves problem, where more
complex results are obtained due to P-SV mode conversion.
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