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SUMMARY

A boundary method is applied for solving the scattering and diffraction
of elastic waves by three-~dimensional irregularities on the surface of a half-
space. The method makes use of the completeness of a family of wave functions
in order to congtruct the scattered fields. Boundary conditions are satisfied
in a least-squares sense. Numerical results are presented for two types of
irregularities under vertical incidence of P or SV waves.

INTRODUCTION

There is no doubt that topographical irregularities may induce significant
changes in the nature of ground motion at nearby places during earthquakes. In
the last few years the problem has attracted the interest of engineers as they
are concerned with the design of important facilities in which is mandatory
the proper assessment of groundmotion. Lateral heterogeneities may generate
large amplifications and spatial variations of seismic ground motion and this
is also relevant in planning and microzonation studies.

Most of the work in this area has been devoted to study the ground motion
at two~dimensional irregularities for various incident wave fields (e.g. Refs.
1-5) . This work has emphasized the physical understanding of local effects so
that quantitative predictions can be made in many cases.

Three-dimensional studies have received less attention because of the
increased difficulties which arise in solving this class of problems. Some
works dealing with three-dimensional problems have appeared. For small-slope
cavities or inclusions at the surface of an elastic half-space a perturbation
approach have been presented (Ref. 6) and reasonable estimates were obtained
of the scattered Rayleigh waves, as compared with observations (Ref. 7). A
finite difference analysis of axisymmetric irregularities has been presented
(Ref. 8) for vertically incident shear waves. It was assumed a rigid base at
certain depth and lateral transmiting boundaries. Spectral ratios were
obtained and comparison with some observations gives reasonable agreement.
The exact solution has been obtained for incidence of P waves at a semi-
spherical czvity under the acoustic approximation (Ref. 9). For the same
geometry and assuming an elastic medium, a solution has been presented for
incident P and 8 waves (Ref. 10). It seems, however, that this approach is
limited to small frequencies.
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In this paper the scattering and diffraction of elastic waves by a three-
dimensional irregularity on the surface of a half-space are considered. A
boundary method recently developed for two-dimensional problems (¢.g. Refs.
11-16) and extended to three-dimensional cases (Ref. 17) is presented here.
The scattered fields are comstructed with linear combinations of functions
which form a complete family (Ref. 18) of golutions of the reduced Navier
equation. Coefficients of the linear forms are obtained from a collocation,
least-squares matching of boundary conditions. The mentioned solutions are
given in terms of spherical Hankel and Bessel functions, associated with
Legendre and trigonometric functions (Refs. 19 and 20). Since each one of
these solutions does not satisfy in itself the free-boundary conditions, the
numerical treatment is extended to part of the half-space surface.

In the present approach, axial symmetry of the scatterer is assumed in
order to allow azimuthal decomposition; the problem is split into ''two- dimen
sional” ones. For normal incidence of P or SV waves only one azimuthal number
is required. In what follows, the problem is formulated and the method desg-
cribed in brief. Some numerical examples are given for vertically incident P
or SV waves on different surface irregularities.

FORMULATTON OF THE PROBLEM

Consider the elastic half-gpace and a three-dimensional surface Irregularity
which in Fig. 1 are denoted by E and R, respectively. Let 8;E and #;R be the
free boundaries of the regions, and 93;E = 9;R be the common boundary between
them. Under incidence of elastic waves the total field is obtained by superpo
sition of diffracted waves on the gree-f4<eld solution, £.¢. on the solution
in absence of irregularity.

Fig 1. Definition of kegions E and R and its
boundaries

For harmonic dependence of time, the displacement vector, U, must satisfy
the reduced Navier equation:

W20+ (A + p)VVT + pw?T = 0, (n
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where A, U = Lamé constants, 0 = mass density and w = circular frequency. The
elastic constants and the mass density should be particularized for each
medium.

Boundary conditions are those of zero tractions at 3;R and 9,E and conti-
nuity of displacements and tractions across 3R = 3;E. In addition, the
diffracted fields must satisfy the Sommerfeld-Kupradze elastic radiation
condition at infinity (Refs. 21 and 22).

METHOD OF SOLUTION

Let us write the total fields as
2 N o

F=3Pyr 1 5 o4 FE (2)
j=0 n=0 m=0 JOT JOE
for the region E, and
2 M n
Rz 1 1 B & (3)
j=0 n=0 m=0 J"T INW

for the region R. In Eq. 2, (0 = displacement vector of the free-field
gﬁlutian, Gbnm = displacement vector of a scattered field. In Eq. 3,
w,nm=zdispldcement vector of a refracted field. Ajppy and Bipm are unknown
céefficients and N, M are the orders of approximations. The first index in
the given linear forms corresponds to the type of the field . There are three
types of solutiong; toroidal of S waves and spheroidal of P and S waves (Ref.
20). The solutions depend on other two indexes; n and m, the radial and
azimuthal numbers, respectively. The scattered or refracted solutions can,
in general, be written in the form

0
£_(x) (6, 0) @

in which f (r), the radial functiom, is given in terms of spherical Hankel ox
Bessel funBtions for the regions E or R, respectively (Ref. 17). F®(6, ¢) is
a vector function which is given in its different forms in terms of the
function

"0, ¢) = Pz(cose)eimq) )

and its derivatives. Here Pm(-) = Legendre function and m =0, * 1, * 2,...,
¥ n. It can be seen, from Egs. 2 to 5, that the scattered or refracted fields

contain sinus and cosinus of m¢, where ¢ = azimuthal angle (Fig. 2).

By imposing boundary conditions at a finite number of points on the
boundaries, a system of linear equations for the unknown coefficients is
obtained, in which the independent part is given in terms of the free-field
solution. It is convenient to form an overdetermined system and solve it in
the least-squares sense. This '"collocation and least-squares” approach has
been useful in two-dimensional problems (Refs. 11-16, 23, 24).
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Fig 2. Cartesian and spherical coordinate
systems. Unitary vectors in the
spherical system

THE AZIMUTHAL DECOMPOSITION

If the shape of the irregularity is independent of ¢, that is to say,
axisymmetric with respect to the z-axis the orthogonality of azimuthal functions
allows a complete decomposition of the problem in terms of the azimuthal
number. It can be shown that any component of the free~field can be expanded
in a Fourier series of azimuthal functions (Ref. 17), and also that the
evenness and oddness properties of the free~field solution hold for the
diffracted and refracted fields. Then, if the gcatterer is axisymmetric,
boundary conditions also have these properties, £.¢. being even or odd. In

this form it suffices to solve a "two-dimensional™ problem for each azimuthal
number .,

For vertically incident plane waves only one azimuthal number is required.
In this case, for P waves, only m = 0 is needed; for SV waves, it suffices to
take m = 1, If the incidence is nearly vertical only a few azimuthal terms
are needed to obtain good results. For almost grazing incidences or for
Rayleigh waves with large horizontal wave number, this approach would require
many azimuthal numbers. However, even in this eritical case, four or five
azimuthal terms can give a good approximation if the horizontal wave-lengths

of the incident field are of the order of the maximum horizontal dimension of
the irregularity.

EXAMPLES

In this section some results are presented for normal incidence of P or
SV waves upon two types of surface irregularities; a ridge and an alluvial
deposit. Results are given in terms of normalized frequencies for each type
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of incoming waves. These are

- 492 _ 2a ka _ 2a
R W Ml (6)
P S
for P and SV waves, respectively. Here, g, k = wave numbers, A , A = wave-

lengths and 2a = maximum diameter of the irregularity. In all cgsesf the

examples correspond to nq
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or T, equal to one.

Surface ampYitudes of spherical displacoment components.

The order of expansions,
the number and location of col
location points are obtained
using a "trial and error" pro-
cedure which is based upon the
error amalysis of boundary
conditions and the stability of
the surface displacement field.
The results were obtained with
an order for the expansions of
ten and 30 collocation points
placed uniformly at 3;R, 3R
and at 9;E in a length of 2a.
The calculated residual trac-
tions do not exceed the six
per cent of the maximum stress
in the free-field solution,.

Fig. 3 shows the normalized
amplitudes of displacements for
incidence of P waves upon a
ridge which shape is given by
z=h [1-3£2+2E%] , where 0gEx1,
h=heigth ?f the ridge, and
€=(x2+y2) h/a. Results are given
for h/a= 1 and a Poisson coeffi-
cient v, = 0.25. For incidence of
SV waves upon the same irregular
ity the results are shown in Fig.
4. Here the displacements are
normalized with the sinus or
cosinus of the azimuthal angle ¢
showing the three-~dimensional
nature of the surface field.
Amplifications of about 200 and
250 per cent can be observed for
the incidences of P and SV waves,
respectively.

For an alluvial deposit with
the depth given by the same shape
of the studied ridge, Figs. 5 and
6 show the normalized amplitudes
of horizontal and vertical dis-
placements on the surface for
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incidence of P and SV waves,
respectively. Parameters are
given by h/a = 0-53 I /UE=O‘25’
pr/Pg = 0.75, vg = 0.3 and

vg = 0.25. In this case, ampli-~
fications of 200 and 300 per
cent are observed. Note that
important mode conversion takes
place given significant hori-
zontal and vertical displacements
for incident P and SV waves,
respectively.

CONCLUSIONS

A boundary method hag been
applied for solving the scatter
ing and diffraction of elastic
waves by axisymmetric surface
irregularities. The method makes
uge of & complete family of wave
functions, which are solutions
of the reduced Navier equation,
to comstruct the scattered fields.
An azimuthal decomposition allows
to solve the problem as a sequence
of "two~dimensional" ones.

Some results were given for
vertical incidence of P or 8V
waves upon two types of irregu-
larities. Large amplifications
of motion were found at the top
of the ridge and, for the stud-
ied normalized frequency the in
cidence of 8V waves appears as
critical. The examples of the
alluvial deposit show the im~
portant effect of the mode con
version which takes place there.
Although more results are needed,
the obtained ones suggest that
the influence of local irregu-
larities on ground motion cannot
be disregarded.
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