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SUMMARY

This paper presents an improved theoretical model for the determination
of design spectra for sites of Known soil and topographic conditions. The
model, stochastic in nature, is based on wave propagation theory and a method
of superposition for complex modes. The numerical algorithm is based on a
ptane strain finite element formulation and accepts trains of surface or body
waves arriving at given incidence angles. The applicability of the model to
different geometries and soil properties distributions is discussed. Inelastic
effects, important for strong seismic motions, are approximately considered
using a least squares equivalent hysteretic damping for the scil. Uncertain-
ties on the definition of the seismic excitation are handled by using, as
input to the model, design spectra on firm soil previously determined from
seismic risk studies.

INTRODUCTION

The definition of seismic design parameters for specific sites should
include information on the effecte that local soil and topographic conditions
have in seismic motions. Its importance has been widely recognized; however,
JTittle attention has been devoted to practical ways to consider those effects
on design response spectra.

Earthquake response of soil deposits has been the subject of research for
more than two decades, Numerous applications and solution methods have evolved
from these efforts. Unfortunately their goals have been restricted to the
determination of amplification functions for Fourier amplitude spectra, which
are not of direct interest in earthquake design of structures. The main reason
for this drawback is that these functions are directly obtained from a dynamic
response to steady state harmonic excitation, while the determination of
amplification functions for response spectra involves dealing with the proba-
bility distributions of maximum response at firm soil and at sites with diffe~
rent soil characteristics.

In this paper, a different approach to the problem is proposed. It invol-
ves modelling aspects previously not considered and a realistic approximation
to include the uncertainties in the nature of seismic excitations on firm
s$0il. The numerical model used to solve the wave propagation problem is one of
finite elements with conditions at artificial boundaries which approximate the
free passage of waves. The strategy of solution is such that spurious reflec
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tions can be minimized using a recursive solution of the model.

The excitation to the model is given in terms of a power spectral density
determined from the design spectrum using random vibration theory. Due to the
discrete nature of the numerical model a complex mode superposition approach
was chosen.

SGIL AMPLIFICATION MODEL

The determination of the response characteristics of soil deposits subjec-
ted to seismic excitation involves the solution of a complex wave propagation
problem which is normally attained with semi~analytical and/or discretization
methods (Refs. 1 and 2.

0f all the possible formulations those using integral methods and finite
elements have been extensively used. Integral formulations have the advantage
of being directly applicable to the Kind of problems inasmuch as the solution
is only required on the boundary. Nevertheless, their numerical implementation
is complicated and their operation cost high, Additionally, it is not possible
to formulate an algebraic eigenvalue problem required as a preliminary step to
a complex mode superposition, Finite elements, on the other hand, are easy to
implement and produce a good computational efficiency. They have, however, the
difficulty of requiring the definition of conditions at artificial boundaries
to simulate the infinite extent of domains associated to soil domains, The
method has as an advantage that the formulation of the algebraic eigenvalue
problem follows directly from the discretized equilibrium equations. In this
paper a finite element formulation is used.

The discretized dynamic equilibrium equations for a linear wviscoelastic
medium resulting from a finite element displacement model can be written as

MU+ CU+KU=P () (1)

where M, C and K are the respective mass, damping and stiffness matrices, U is
the vector of total nodal displacements, P is the time dependent ioad vector,
and dots on U imply time derivatives.

Damping characteristics of soil media are generally of the hysteretic
type. Their modelling leads, in time domain solutions, to a non linear set of
equations impractical to solve. On the other hand, approximations, assuming a
damping matrix of the Rayleigh type, do not reflect the frequency independence
of hysteretic damping. This drawback can be overcome if, during the determina~
tion of the cofficients that define the damping matrix, a leagt squares crite-
rion is used in which the independece is enforced in an approximate way.

Load vector P is a function of the tractions along artificial boundaries,
which, in turn, may be derived directly from the stresses on the continuous
model. Thus, for a linear problem, stresses along the artificial boundary can
be written as

o E
Vij = vij + Vij (2)
where o is the stress tensor in the continuous model, the superscript O

stands for the free field component, i.e. stresses associated to a simplified
problem for which the solution is Known. and superscript E for the complemen-
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tary part, i.e. stresses in excess of the free field.

Stresses in excess of the free field may be approximately derived from an
absorption condition similar to that used in the approximation of viscous
boundaries (Ref 3). In this case, any information, normally intuitive on the
range of incidence angles and/or the Kind of waves in excess of the free
field, is taken into account using a least squares approximation (Ref. 4).
Thus, for a plane strain problem, stresses associated to waves propagating
in the direction shown in Fig. 1 are
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or in compact form
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where H= ( Cy - 2 5 Cg) with s = C/C, , ﬁ? and £ are the particle velocity
components in the excess waves field, and & is the angle that defines the
propagation direction.

N

Elements of D in eq. 4 are dependent on soil properties and on &, which
is in general not Known. This difficulty can be conveniently removed if a
least squares criterion is used to approximate D with a new matrix D*¥ whose
elements are 8 independent. For this, we define the mean square error as (Ref.
5)
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where UW;(8) is a weighting function reflecting the distribution of the waves
arriving at a given point and ©, and &, are the limits of the propagation
range.

By assuming Wi= cos & , the above formulation gives results equivalent to
those obtained from the minimization of reflected energy at artificial bounda-
ries {Ref. 3).

Once all elements of D are determined, tractions <(components of the
stress tensor referred to a local cartesian system) at a particular boundary
are directly obtained using simple tensor transformations. For example, on a
horizontal boundary we have, for the two dimensional case
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By the substitution of these traction boundary conditions in a conventio-
nal finite element formulation we get a load vector P, such that

623



p=p +c 0" (8

where C_. is a viscous damping matrix, such that only the elements associated
to degrees of freedom on artificial boundaries are different from zerc.

Considering that the velocity field in excess of the free field can be
expressed as

F=10 -F )
the final dynamic equilibrium equations are
MU+CO+KUu=p -c, 0° (10
where c=¢- Ce

The use of matrix Ce in eq. 10 represents only an approximation to the
exact problem. An improved solution may be obtained, however, if the results
from a first free field consideration are used as free field for a second
approximation. This procedure can be recursively used until the desired preci-
sion is attained.

STOCHASTIC APPROXIMATION

Uncertainties present in the definition of expected earthguake motions at
a given site are such that a deterministic analysis based on eq. 10 is not
realistic. For this reason, in this investigation an stochastic approach for
the seismic loading was taken.

Due to the discrete nature of finite element solutions, a modal superpo-
sition approach was considered convenient. For this purpose, the equilibrium
equations given in eq. 10 can be rearranged in a system of order 2n as follows
(Ref. &)

o Ml [ o[y e
8T+ 3 hm (1
M ClU L0 K IQJ lf(t)
or, in compact form
AY+BY=0 (12)
1f we congsider as homogenous solution to eq. 12
Y = explat) § (13

the solution of the resulting eigenvalue problem gives 2n complex eigenvalues
of the form

o, = -8, + iy, (14)
3 BJ YJ
and the corresponding complex eigenvectors
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b = |4 (15

The nonhomogeneous solution corresponding to eq. 12 can be expressed as a
function of modal coordinates (t) by
2n

Y= I E (£) ¢ (14)
j=1
Substituting eq. 14 in eq. 12 and premultuplylng by @k we obtain, after
using the orthogonality property of the modes (Ref. &)
mkF,' k(t) —ockmk?;k(t) = qk(t) a7

If we consider q.(t) a harmonic stationary function given by exp(i Qt),
the solution of eq. 17 for gk is the frequency response function

H(Q) =—iQ/mk(0Lk- i Q) (18
where {l is the frequency and i the unit imaginary number,

Now, if the excitation is a stationary random process with zero mean, the
cross spectral density function of E., E. can be expressed as (Ref. 7)

- () = H 49)) H*(Q) 5 ) (19>

where Sq'qk is the cross spectral densnty of q. , qkand # stands for complex
conjugate. J ,

On the other hand, since
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we obtain
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where Fn stands for the nth component of the load uector.
Substituting eq. 21 in eq. 19 we obtain
SEE(Q)—-ZZcb cpkH(Q)H(Q)SFF(Q (22)
ik mn

Furthermore, from egs 15 and 14, the nodal acceleratlons are defined as
U=cIo, ¢.E, (D (23)
~ J QJ EJ

Considering as an example a plane strain problem, the horizontal and
vertical components of accelerations at a point a, u,, and u,, (Fig. 2) are

2n
= . 2 (24)
Ua jgl 0 ¢u1a,jEJ(t)
and
2n

i .= . = . (b)) (25)
Ysa j.§1 °‘J¢Uza,jEJ

625



Thus, reasoning as before, the spectral density function for i is

5 =LZaad o S: ;) (26)
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and in a similar way for i,gy
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Substituting eq. 22 in egqs. 2é and 27, the following relationships are
ocbtained
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In the determination of the cross spectral densities for the loading,
i.e. Sp 7. ), it is necessary to assume that the free field excitation is
produced §§ Pa particular type of wave of Known incidence angle. In what
follows a procedure required to determine Sp p (Q) is illustrated by cogside-
ring, in a plane strain problem, that the free field displacement u, is
produced by a train of P waves with an incidence angle B.

Using concepts of wave propagation theory, the velocity and stress fields
for the above mentioned problem may be written ag (Ref., 9
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where fi are complex functions of their arguments not shown here due to space
VTimitations.,

In a finite element formulation, once the streszei at artificial bounda-
ries are Known the determination of the load vector P is straightforward. On
the other hand, since matrix C, can be conveniently approximated as diagonal,
the mth component of ltoad vector F, is

qu)ag’;(t) "‘in';ﬁ‘“ (31)

where subindex m indicates the component of the respective vectors and ¢ is
the corresponding diagonal element of matrix Cé .

Using concepts of the theory of stochastic processes, it can be shown
that (Ref. 7), the cross spectral density function for ﬁ;, ﬁx is
SFF<Q>=SQQ(Q)‘"C So.0 () -~ ¢ Sp ¢ (D +c € 8By o (D {32)
mn PPy n"n m UnP mon uun
which expressed in terms of the spectral density function of the ground acce-
Teration for the free field {(condition at firm s0il1), is finally written as
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PROBABILISTIC AMPLIFICATION FOR RESPONSE SPECTRA

The foregoing paragraphs present a procedure for determining the amplifi-
cation of power spectral densities due to local soil and topographic condi-
tions. In practice, however, seismic design is based on a design spectrum for
the site; therefore, it is necessary to study the relation between design
spectrum and an equivalent power spectral density. For this, it will be consi-
dered that:

a) The acceleration record, corresponding to the design spectrum on firm
ground, is a stationary stochastic process with spectral density 5 () and
duration s. a

b) Sy () is unknown, but it can be estimated from a simplified criterium that
assumes the design spectrum ordinates as proportional to the square root of
the wvariance of the response of a single degree of freedom system at time ¢,
i.e., the end of the acceleration record (Ref. 8).

In accordance with the above mentioned criterium, ordinates of the pseudo
acceleration spectrum are defined as

Az(Qi) =K Q; var r{s) =K Q; J'Sa(Q) Hay(Q,Qi,s)l2 daQ (34)

where Hay(Q,Qi,s) is the evolutionary transfer function proposed by Vanmarcke
2 2 2 2 2 4-1

Hay {00l ,8)] = [(Qi -+ 4;sgia] (35)
and by is an equivalent time dependent damping ratio (Ref. 10).

Thus, given AL )y the determination of $,(Q) follows from the solution of
the integral equation given by eq. 36. To go this, an efficient algorithm
based on a Teast squares collocation method and an analytical integration has
been implemented. In a strict sense, the proportionality coefficient K needs
to be Known. However, by considering K only a function of spectral damping and
redefining the power spectral density ordinates as

Sa(ﬂ) =K 8, (@ (368)
the formulation presented in this paper becomes independent of K.
FINAL REMARKS

The approach proposed herein permits the direct transformation of design
spectra on standard conditions (firm ground, flat topography) into design
spectra corresponding to more general local conditions. The tranformation is
based on the assumption of proportionality between the peak respomse values
(for given probabilities of been exceeded) of simple systems to random ground
motion an the square roots of the variances of the responses of those systems
to finite segments of stationary gaussian ground motion assumed to be equiva-
Tent to the earthquake excitation. As presented here, the approa ch implies
determining a steady state frequency domain transformation function for spec—
tral densities of ground motion, using an equivalent damping which accounts
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for the finite duration of the excitation.

Alternative approaches can be formulated, capable of accounting in a more
accurate way for the characteristics of the evolutionary response .of local
formations and structural systems to the base excitation, as well as to the
probability of exceedence of spectral ordinates. These approaches are more
complicated, and sound recommendations about the adequacy of the wvarious
approaches must arise from their calibration with the results of systematic
simylation studies,
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