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SUMMARY

New theoretical models that account for spatial as well as temporal
variation of earthquake ground motion can be used to generate space-
averaged input ground motions for structures with large, rigid founda-
tions as well as correlated input motions for structures with multi-
supports. A specific format for ground motion characterization suitable
for seismic analysis of spatially extended structures is suggested, and
some empirical validation is provided based on statistical analysis of
records from the Taiwan seismic array.

INTRODUCTION

To date, it has been common in earthquake engineering to focus
attention on the time history of ground acceleration (and its respomnse
spectrum) at a given location in space. This is a logical consequence
of the fact that much of our knowledge about earthquake ground motion
comes from recorded accelerograms, and that engineering attention has
traditionally focused on "point" facilities for which it seemed reason-
able to ignore "local' spatial variation of ground motion in seismic
analysis and design. However, for spatially extended structures such
as pipelines and embankments, or structures on widely-separated multiple
supports or on large foundation slabs, the spatial variation of ground
motion may be just as important as the temporal variation. Empirical
strong-motion data from closely spaced arrays of seismographs is now
gradually becoming available, and engineers are increasingly directing
their attention to the effects of earthquakes on spatially distributed
systems.

It is argued herein that analytical models of homogeneous random
field theory can be used to represent the space-time character of ground
motion in a (locally) homogeneous random medium (say, a particular type
of bedrock or a layer of alluvial soil) during the strong phase of an
earthquake. In a wide alluvial basin, waves will tend to propagate in
all directions, and the resulting random field of ground motions (say,

a specified component of horizontal motion) may exhibit an isotropic
spatial correlation function. (A more general "ellipsoidal' random
field is characterized by a correlation function with ellipsoidal iso-
correlation contours.) In addition, it may be appropriate (especially
in the near field) to introduce a deterministic phase lag to account for
partially predictable wave front propagation.
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RANDOM FIELD MODELS

General Second Order Statistics

This section provides the necessary background information on
n-dimensional homogeneous space-time processes X(u,t) which depend on
a vector of spatial coordinates u and on time t. At a given location
in space, u = u_, the variance with time is represented by the 1-D
process X(E.,tS? and we denote by S(w) the two-sided "point" spectral
density function of X(u,t). Its Fourier transform is the temporal co-
variance function B(T)T. The assumption of homogeneity in space implies
that the statistics of X(u,t) do not depend on u. The variance of X(u,t) is

4o
o = j S(wdw = B(1) ] (1)

—» lT=O

The unit-area spectral density functlon is s(w) = ¢ ?S(w) and the temporal
correlation function is p(r) = o B(r) At a given instant, t = tg, the
spatial variation is represented by a random field X(u,ty) which depends
on (n - 1) spatial coordinates. The space-time covariance function is

by definition the covariance between two observations at different points
(u,t) and (u',t') in the parameter space:

[

B(Eﬂ}_‘stst') E[X(}_l:t) - mX) (X(E"t') - mX)]

Bu —u'st - t') = B(v,1), (2)

where v is the vector of distance separations (vi = u; - uf, vz = us-ul,...)
and 7 is the time lag t — t'. By converting the time lag T into a fre-
quency w, the space—-time cross—spectral density function C(v,w), is obtained:

oo
Cls0) = = / B(v,m)e ¥Tdr 3)

If the two (spatial) locations coincide, that is, u = Ef or y = 93 then

B(0,t) = B(t) (4)
and
C0,w) = S(w), (5)

Equation 3 then reduces to the one-dimensional Wiener—Khlnchine relation
between S(w) and B(T).
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Frequency-Dependent Spatial Correlation Function

It is useful to normalize the cross-spectral density function with
respect to its value at v = 0. Define

A~ () = Cly,w) _ Clu,x)
Hm(_)) = C(Q_,w) = S(L) . (6)

cu(¥) is the frequency-dependent spatial correlation function (subscripting
w is intended to emphasize the dependence on the distance shift vector ).
pu(¥) has the character of a correlation function as it quantifies the -
degree of spatial correlation associated with individual sinusoidal com—
ponents of the space-time process X(u,t). The "composite” spatial cor-
relation function o (V) may be expressed as follows (Ref.l):

+oo
o = [ 5 s, ™

-o0

In words, the (composite) correlation function ¢(v) is a weighted combina-
tion of freguency-dependent correlation functions g (v); the weighting
function is simply the unit—area spectral demsity function s(u).

If all but one of the spatial coordinates of the space-time process
X(u,t) is held constant, one obtains a direction~-dependent process X(ui,t),
i=1,...,n ~ 1, itself a two-dimensional space-time process. The sub-~
script i identifies the free spatial coordinate. All the relationships
stated for n-dimensional space-time processes can also be restated for
X(ui,t).

Quadrant Symmetry

If the homogeneous space~time process X(u,t) is real, B(v,7) will be
real, while the partial transform C(v,w) will in general be complex. 1In
case B(v,T) is guadrant symmetric, all the Fourier transforms will be real
(owing to "evenness" with respect to each compoment of the space~time lag
vector). These comments also apply to the frequency-dependent correlation
function p, (v). If the correlation structure of X(u,t) is quadrant symmetric,
pw(g) will be real; otherwise, it will be complex.

Empirical Study

We report here on a small part of an empirical study of the spatial
variation of earthquake motion based on the strong motion part of ome
component of the accelerograms from an earthquake recorded on January 29,
1981 by the SMART 1 digital seismograph array located in Lotung, Taiwan.
These accelerograms have already been studied by others (Ref. 2 and 3),
but the processing methods and results presented here differ from those
considered before.
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The earthquake under study had a 6.9 magnitude and a maximum re-
corded horizontal acceleration in the north-south direction of 0.24 g.
The epicenter was located 30 km from the center of the array at an
azimuth of 153.8°, and the focal depth was 11 km. Only the epicentral
component (N26°W) is analyzed herein. The layout of the SMART 1 array
is shown in Fig. 1. The accelerograms recorded at stations 006, MQ6,
106, CO0, 112, M12, and 012 and at statioms 003, MO3, 103, CO0O, I09,
M09 and 009 were used in the data processing.

The analysis is based on the assumption that the records comstitute
limited observations of a space-time random field, the main objective
being to estimate the second-order characteristics of this field. Con-
sider two (jointly stationary) random processes Xj(t) = X(Ej,t) and
X (t) = X(B§,t) whose sample functions xj(t) and xy (t) extend over the

T

interval -T/2 < t < T/2. The sample cross spectrum of X3(t) and Xk(t)

is (Ref. 4):
T

- - -i2wfT

5,0 = / B (0 e dr, (8)
-T

which is the Fourier Transform of the sample cross covariance function,
Ejk(r) and is in general complex. The sample cross spectrum has a high
variance and, hence, tends to be very erratic. The associated smoothed
cross spectrum involves the use of a weighting function W(f):

©

S0 = [ 5,0 . )

-0

By using the property of the convolution integral, the above relation can
be shown to be equivalent to

2 _ = -12nfr _/ - -i2nfT
Sjk(f) —:/ w(t) Bjk(T) e dt = B(T) e dr. (10)

Here, W(f) and w(1) form a Fourier Transform pair, and are called the
spectral window and the lag window, respectively. The lag window has
the properties

(1) w(d =1
(ii) w@ + 1) =w(d - 1)
(i) w(®) =0, 12 d+MW, t<@-m, (|[d +M) <7T (11)

Thus, the window is symmetric about the lag d, and has a half-width M.
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The significance of these parameters is discussed below.

The autocovariance function and the sample and smoothed autospectra
are obtained by setting j = k, and taking d = 0. Since the autocovariance
function is symmetric about the origin, the sample and smoothed auto-
spectra are real.

The smoothed coherency spectrum, i.e., an estimate of pv(w), is defined

by
- s, ()
k

P () = S g 12
jk [Sjj(f) 81 () 2 (12)
and the smoothed phase spectrum by

=
¢jk(f) tan —7§;~r§?;z?37—) ) (13)

where Im [ ] and Re [ ] stand for the imaginary and real parts of the
argument. Although the principal value of the phase is in the interval
(~90°, 90°], its range can be extended to (~180°, 180°] by identifying
the quadrant iIn the complex plane in which the cross spectral ordinate
is located.

The maln difference between the estimation of the auto and cross
spectra 18 in the value of the lag-shift parameter d at which the lag
window is centered. (For the auto spectrum the value of d is zero).
The least bilas is introduced into the estimation of the cross spectrum
kf the lag window is centered such that the aligned phase spectrum
¢ék(f) = ¢jk(f) + 27df does not show a linear trend. In most cases
where the cross correlation is strong d will correspond to the lag at
which the cross covariance function has its peak. The lag-shift para-
meter, d, indicates the lead/lag relationship, i.e., the gross phase
information, of the two processes Xj(t) and X (t).

The parameter M controls the degree of smoothing. If M is large the
degree of smoothing is low, but the bias in the smoothed spectral estima-
tors 1s also small. The choice of M is also influenced by the method of
post-processing of the estimated spectra (Ref. 5).

Results of the Analysis

The accelerograms from the stations along the two lines from 006
to 012 and from 003 to 009 were processed in a palrwise manner using
the method described above.

The lag-shift parameters obtained from the processing, scaled by 100,
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are depicted in Figs. 2 and 3. The lead/lap relationship between the
accelerograms is indicated by means of the curved arreows.  Hach arrow
indicates the apparent direction of wave propagation while the nuwber
on each arrow indicates the value of the lag-shift parameter.  Those
parameter values that coincide with the peak of the cross covarilance
function are encircled. Tt can be seen that a systematle propagation
effect is apparent along the direction from 006 to 017, but {x nnt
evident in the orthogonal direction. This is not surprising since the
direction from 006 to 012, N18°W, is close to the direction from the
eplcenter to the center of the array, N26°W, alony which propasation
would be expected to take place. The lag-shift paramcters corresponds-
ing to the stations on the line from 006 to 012 are plotted apaninst the
separation between stations in Fig. 4. By fitting o straleht Uine, by
eye, the gross velocity of propagatlon Is cstlmated to be abonmt 3600
m/sec. This implies that the waves propapate principally throngh the
bedroeck and then turn upward into the seft seil ar the site,

It can be seen In Figs. 2 and 3 that the lageshIft parameter:s hoave
an approximate closure property. That is, for o teiplet 1, |, k of
stations lying on a straight line, wi have dyg ”i} + ”ik’ alsebrateally.
This property was used to obbaln o consisteat set of aliened phovey
T (F) = ¢ k(f) + 2nd kf. An altermative, physleally appealine interpro-
tation is” that these are the phases of the allpued geveleropram, vift}.
obtained from the original aceeleropranms, :ﬁi(t‘), thronph

y ey =%, (t) 5 yj(c) = xl(t - ci”) N B P {143

Thus, the accelerograms obtained from the statfons tving alene o utraisght
Iine are aligned relative to one of themm. OF course, thin alipnment
alters only the phases and not the abselute values of coherency. Prolimi-
nary analyses (Ref. %) showed that the abselute values of colwerency nd
the aligned phases were funetions only af the sweparat lon, o, between each
palr of stations and the frequency, f, f.e., Qik(i) may be oweitton an D (),
where vy is the separation between stations § .and k. Furthermore, the
absolute values of coherency and allpned pluvies corvesponding to palry of
stations along the two linen from 006 ta 012 and from 003 1o 009 were very
gimilar. Thus, the alipned aceelerverams may be constdired au sttt Loes
from an isotropic random fleld.

Since the lap window used In the processing wan wide, the result fup
coherency spectra of the alipned acerleroprams were guite vreat e, For
the purpeses of viewing and Interpretation, these were further umpothed
according to

W=y f -~ 1

Ly 0w

Vo= Y

Yo Mol - {

? e
-1, .
where K(x) = ¢ « The parameters Av oand A, which conrrol the depree
of smoothing, were chosen to be 40 w and (.66 Hz, rospectively.  The ab-
solute value and phase components of “u(f} are shown {n Piles, 5, 6 aud 7.
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1t can be seen that the absolute value of coherency decays with in-
creasing separation and frequency. For the low frequencies from 0 to
about 3 Hz the absolute value of coherency is approximately constant for
a given separation. There appears to be a corner frequency between 3
and 4 Hz after which the coherency decays more rapidly. It is clear that
the aligned phases are approximately zero for the separations and fre-
quencies of interest. This suggests that the propagation (phase) and
correlation (absolute value of coherency) parts can be separated, at
least approximately, by utilizing the lag-shift parameters. This de-
coupling and the resulting isotropy, which are achieved through the
alignment procedure, are very desirable properties both from conceptual
and modelling polnts of view.
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Fig. 1l: Thae SMART 1 array

Fig. 2: Lag-shift parameters -
006 to 012

Fig. 3: Lag-shift parameters -
003 to 009
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