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SUMMARY

When analyzing earthquake strong motion records through the Fourier
transformation, the signals involving significant properties of the waveform
are divided into two halves. One is expressed in temms of the Fourier ampli-
tudes, and the other in terms of the Fourier phase angles. Research works
so far conducted extensively have focussed their interest primarily upon
amplitude properties. 1In this paper, paying attention to phase angle prop-
erties, synthetic earthquake strong motions are generated. The cumulative
energy quantities and elastic responses are evaluated for these motions, and
the significance of phase angle properties is discussed.

INTRODUCTION

A strong motion record obtained during an earthquake shaking is a time
function representing acceleration of motion at every moment. A time func-
tion representing physical phenomena will generally be integrable. It leads
to the evidence that an earthquake record and its corresponding Fourier trans—
form will uniquely be related with each other through the Fourier pair;

£ty + Fw) (1)

where f(t) and F(w) denote a time function of strong motion record and its
Fourier transform, respectively. Equation (1) can be expressed by a pair of
Fourier amplitude function A(w) and Fourier phase angle function ®&(w) through

F = A(w expl-jd(w)] (2)

Equations (1) and (2) signify that a pair of Fourier functions A(w) and ¢{w)
will uniquely be determined by time function f£(t) , and vice versa.

Signals of a time function of earthquake strong motion record are divided
equally into two halves. One of halves is given for Fourier amplitude prop-
erties A{w) , and the other for Fourier phase angle properties ¢(w) .

Studies upon earthquake strong motion records so far carried out exten-
sively, however, have focussed their interest upon relation between charac-
teristics of earthquake motion records and those of their Fourier amplitude
quantities. A few [1,2,3] have placed their emphasis upon the Fourier phase
angles. It is the purpose of this study presented herein to reveal the sig-
nificance of Fourier phase angle properties upon an earthquake strong motion,
and apply phase angle properties obtained from analysis upon real earthquake
strong motion records in simulation of realistic earthgquake motions in an
attempt to make application of synthetic motions in an engineering practice.
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PHASE ANGLE PROPERTIES

To reveal phase angle properties of waveform, suppose that time
function f(t) 1is defined by
f(t) = a sin(27f t) 0 €t <16/f (3)
o o = o

It is a harmonic function as shown in Fig. l.a. The Fourier amplitude takeg
the value of 8a at frequency f being equal to £ Dby the Fast Fourier
Transform computer program used in this study. The corresponding Fourier
phase angle lies in the value of -90°. The Fourier amplitudes are zeros at
other frequency components, and no specific significance, therefore, is
shared with Fourier phase angles.

Let time functions gl(t), gz(t) and g3(t) be defined by

= { a sin(21f t) 0 <tX< 8/f
g, (8) = °© 5 ° 8/t Zt<16/£°
0 0 <t< 8/f
9,08 = { a_ sin(2nf_t) 8/f Tt <16/10 (4)
- 0 ogt<4/f and 12/f_<t<l16/f
9;(8) = a_ sin(27f_t) = 4/f <t< 12/f °

Each waveform is described in Figs. 1.b, l.c and 1.d, respectively.

The Fourier amplitudes of these three waveforms are identical with one
another as indicated in Fig. 2.a. Note that the amplitudes in the figure
are plotted in a logarithmic scale.

The Fourier phase angle properties of these time functions, however, are
quite different with one another. Figures 2.b, 2.c and 2.d illustrate the
phase angle properties of functions q (t), g,(t) and 9, (t) , respectively.
The phase angle at frequency f/fO belng equéﬁ to unlty is an identical value
of -90°, while angles at other frequency components take one of values of 0°,
+90°, -90° and -180°, in each waveform.

When analysis has been conducted only upon an aspect concerning Fourier
amplitudes so far, these three time functions are concluded to be identical
with one another. It is recognized, however, that time functions g_(t),

g, (t) and g_(t) in Figs. 2 have different shapes of waveform with one anoth-
e¥ along their time axis. When considering that earthquake strong motions
consist of a number of harmonic motions, Fourier analysis concerned only with
their amplitude properties cannot reflect proper significance included in the
waveform upon engineering practices. The half amount of informations involved
in terms of its Fourier phase angle properties should be taken into account
for further analyses of earthquake strong motion records.

Through the inverse Fourier transform, a time function of waveform is
reproduced from its Fourier amplitudes and phase angles. It is expected that
components corresponding quite different frequencies will individually con-
tribute to the shape of waveform. Neighboring frequency components will
interfere and intensity one another. Paying attention upon three major com-
ponents having largest Fourier amplitudes, a time function is generated.
Figures 3.a, 3.b and 3.c represent waveforms corresponding to g. (t), g, (£)
and 93(t), respectively. It is concluded that generated functions reproduce
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the time varying shape of waveform in good agreement. A similar phenonenom
to the "leakage" in the window analysis can be observed. The lower and higher
frequency components excluded in reproduction of waveform yield small ampli-
tudes of motion which shall be zeros in the exact inverse Fourier transform.

SIMULATION OF EARTHQUAKE STRONG MOTIONS

Two types of procedures for simulation of earthquake strong motions are
introduced. The procedures are both based upon the Fourier transform of a
waveform. One, called the Type~I hereafter, is to determine the Fourier phase
angle properties from the quantities of a specific motion. The other, the
Type~-II, is to establish the Fourier amplitude quantities from the analysis
upon a specific motion. The former will reflect the significance of Fourier
phase angle properties, and the latter will represent the significance of
Fourier amplitude properties upon synthetic earthquake strong motions.

Six real earthquake strong motion records are employed for simulation of
motions. Three are obtained in the States; accelerograms at El Centro (here-
after abbreviated to ELC) during the Imperial Valley Eg. of 1940, those at
Taft (TFT) during the Kern County Eq. of 1952, and those at Pacoima Dam (PCD)
during the San Fernando Eg. of 1971. B2and three in Japan; accelerograms at
Hachinohe (HCH) during the Tokachi-Oki Eq. of 1968, those at Tohoku University
(THU) during the Miyagi-Ken-Oki Eqg. of 1978, and those at Hiroo (HRO) during
the Urakawa—-Oki Eq. of 1982. Three components, two in horizontal directions
and one in vertical direction, in each records are made use of.

Among these accelerograms, the East-West component at Hachinohe is
selected for the specific waveform. The time trace of the accelerogram of
the HCH EW component is presented in Fig. 4. The accelerogram of the SO0E
component of ELC and that of the DOWN component of PCD are shown in Figs. 5.

With use of the Type-I procedure reflecting the Fourier phase properties
of the HCH EW component and the Fourier amplitude properties of the corre-
sponding earthquake accelerogram, synthetic motions are generated through

£(t) = F = a(w expl-jd®w)] (5)
where
Alw) = Axxx YY(cu) )
P = Py gy W

in which "XXX" and "YY" designate the identification of earthquake motion re-
cords, i.e. ELC, TFT and so on, and that of the components, i.e. North-South,
East-West and Up-Down, respectively.

Similarly, with use of the Type-II procedure representing the Fourier
amplitudes properties of the HCH EW component and individual Fourier amplitude
properties of the corresponding accelerogram by use of the relation defined by
Eq. (5), where, in this simulation,

A(w) A {w)
HCH EW (7)

d(w) = Qxxx YY(w)

Simulated earthquake strong motions from Type-I and Type-II procedures are
shown in Figs. 6 and 7, respectively, for the ELC SO0E and PCD DOWN components.
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SYNTHETIC EARTHQUAKE STRONG MOTIONS

Two quantities of strong motion records are evaluated. One is the energy
of waveform defined by the integration of the square acceleration. The other
is the maximum elastic response obtained for a slightly damped SDOF system.
These are obtained for both real and synthetic earthquake strong motions.
Comparing results from real and synthetic motions with each other, the sig-
nificance of Fourier phase angle and amplitude properties is described.

Cumulative Energy

Let the energy contained in waveform f(t) during interval O <t<rw
be defined by the integration of £(t) squared,

T 2
E(T) = j £ (t) 4t (8)
o)
Define "the normalized cumulative energy function” [1,21 by
e(T) = E(T) /E(TD) (9

in which TD designates an entire duration of motion.

In Fig. 8 , functions for synthetic motions from the Type-I procedure
are plotted for the ELC SOOE, TFT S69E and PCD DOWN components. These
synthetic motions reflect the phase angle properties of the HCH EW component,
and its amplitude properties are determined from the corresponding component.
The thick curve indicates the function obtained for the real HCH EW motion,
and thin curves correspond to those obtained for the synthetic motions. Func-
tions for synthetic motions from the Type-II procedure are shown in Fig. 9.
The synthetic motions, in this case, reflect the amplitude properties of the
HCH EW component, and its phase angle properties are established from the cor-
responding component. In this figure, thick curves show results of real com-
ponents of ECL SOOE, TFT S69E and PCD DOWN, respectively, with shift of the
time axis by 5 seconds.

Cumulative energy functions for synthetic motions with combination of the
HCH EW component and horizontal components of other five earthquake records
are determined from a statistical point of view. Figure 10 shows the results
for motions from the Type-I procedure, and Fig. 11 from the Type-II procedure.
In these figures, the thick solid, the thin solid, and two dashed curves
represent the function for the real HCH EW component, the mean value obtained
across the synthetic motions, and maximum and minimum values among the
synthetic motions, respectively. Shaded zone indicates the variation of
three times of standard deviation arcound the mean value.

Maximum Elastic Response

With a fraction of critical damping of 0.05 associated with the SDOF
oscillating system, elastic responses are evaluated. Amplitudes of motion are
so linearly scaled that the total energy E(T.) of motion becomes identical to
that of the HCH EW component. Figures 12 in&ﬁcate the responses for motions
from the Type-~I procedure for components of ELC SOOE and PCD DOWN. Figure 13
describes for motions from the Type~II procedure. Axes x and y represent the
undamped natural period and the maximum pseudo velocity response, respectively.
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For synthetic motions generated with the HCH EW component and horizontal
components of motions, elastic responses are obtained. The mean and the
standard deviation across the responses are determined. Figures 14 and 15
describe the statistical results for synthetic motions from the Type-I proce-
dure and from the Type-II procedure, respectively. The legends of curves in
the diagrams are identical to those representing the cumulative energy.

The shade, however, in the spectral diagrams, identifies the variation of
one time of the standard deviation around the mean.

CONCLUDING REMARKS

Synthetic motions generated from a set of real earthquake components
reveal characteristic feature. The motions from the Type-I procedure which
are reflecting the phase angle properties of a specific motion represent
similar forms in the normalized cumulative energy function to that obtained
for the specific motion. While disagreement of energy quantities associated
with time are found, general tendencies of energy function both for real and
synthetic motions coincide well with each other. The poor coincidence of
quantities would be caused by the possible "leakage" due to the higher and/or
lower frequency components other than dominant components. Provided that
phase angle quantities are determined, energy distribution of waveform will
be established. The cumulative energy function will be related uniguely to
the variation of amplitudes of motion associated with time [1,2]. The Fourier
phase angle properties are concluded to be closely related to the intensity
of motion along duration of motion.

The motions from the Type-II procedure, containing the identical ampli-
tude properties to that of a specific motion, produce similar responses to
those from the specific motion. 1In an elastic analysis, while distribution
of energy along duration of motion differs with one another, responses sub-
jected to the motions are similar. Correspondence between Fourier amplitudes
and undamped maximum velocity responses leads to the evidence of the above
coincidence.

It is concluded that the phase angle properties will determine the energy
distribution of waveform along duration of motion, while the amplitude prop-
erties will define the energy distribution associated with freguencies.
Mathematically, analysis of earthquake strong motion records with their ampli-
tude properties so far will exclude a half amount of informations which are
included in phase angles. It is necessary to reveal features of earthquake
strong motions including their phase angle properties for further analyses
of earthgquake strong motion records.
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