APPLICATION OF PHASE CIFFERENCES TQ THE ANALYSI
OF NONSTATIONARITY OF EARTHQUAKE GROUND MOTIZN

T. Sawada {I)

SUMMARY

Physical meaning of Fourier phase differences of earthguake moticns
is verified through deriving the relationship between the phase differ—
ences and the envelope function of narrow band components containing a
certain frequency of the Fourier spectra. The relationship can be
applied to analyze nonstationary frequency content of recorded earth-
quake motion accelerograms. The results are examined by comparing wit
evelutionary spectra.

INTRODUCTION

The nonstationary frequency content of earthquake ground mnotion is
important in seismic design of engineering structures, since it has a
significant effect on structural response, especially on inelastic
structural response. Various technigues, such as evolutionary spectrum
(Ref.1) and physical spectrum (Ref.2), have been proposed in order *o
analyze the nonstationary frequency content of earthquake mnotions.

In recent studies, Fourier phase angles of earthquake motions have
received attention and they have been applied to analyze the nonstation-
arity in time and frequency regions of earthquake motions. Ohsaki and
others have illustrated from numerical examples that the probability dis-
tribution of Fourier phase differences for earthquake ground motion is
closely related to the envelope function of the motion (Ref.3). Izumi
and others have also clarified the physical meaning of phase differences
by numerical examples, and applied the concept to synthesize earthquake
motions (Ref.4). However, they have not given theoretical verification
for the physical meaning of phase differences.

In the present study, the narrow band components containing a speci-
fied frequency of the Fourier spectra for earthquake motion are approxi-—
mated by a group of harmonic waves, and then a relationship between
Fourier phase differences of wave components and the peak appearing time
of the envelope of the wave is derived from comparison of the Fourier
phase angles of them. Then, by making use of the relationship, the non-
stationary frequency content of recorded earthquake motion accelerograms
is evaluated and the results are examined by comparing with evolutionary
spectra.
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RELATIONSHIP BETWEEN PHASE DIFFERENCES AND
NONSTATIONARITY OF EARTHQUAKE MOTION

When earthquake motion, x(t); is defined for N equally spaced dis-~
crete times, tp=mAt, discrete Fourier transforms of Xp=x(tpy ) can be re-
presented as follows (Ref.5)

N/2

Xp = Z X(fk)'exp(i2ﬂfktm)'Af (1)
k=-N/2+1

in which Af = frequency increment, Af=1/T, T = total duration, and fx =
the k-th frequency, fx=kAf. Then, discrete spectra, X(fk ), k=0,1,.
.«,N/2, are as follows

X(fk) = Xk.exp(id)k) (2)

in which Xg=|X(fy}| and ¢i= Fourier phase angle for the k-th frequency.
Phase difference, A¢y, for the k-th frequency can be defined by

Ok = b+l - G » k=0,1,2, ~=---, N/2-1 (3)

Ohsaki and others have illustrated that the shape of the probability
density function of the phase differences A¢y is very similar to that of
the envelope of time history, where A¢x are assumed to be ranging between
~-27 and 0. In Fig.1l, the probability distribution of phase differences
of recorded accelerogram is illustrated in comparing with their time
history. It is found from this figure that the distribution of the phase
differences is fairly matching with the envelope of the time history.

In the following, the relationship between the probability distri-
bution of phase differences and the envelope function of time history is
clarified by deriving the relation between the phase differences and en-
velope function of the narrow band components containing a specified
frequency of Fourier spectra for earthquake motion.

Consider the Fourier spectrum for a group of harmonic waves, which
has a constant amplitude and linearly varying phase angle within the
frequency range of fn*Af' or —f FAf', where fj= central frequency (Ref.6)

an-exp{-iow(f-fp )t +i¥y] , =A< FS Fr+Af!

Fn(f) = { an-eap[-i2m(f+fy)tn-1¥,] , —fp-Af'SFE-f +AT! (k)
o, otherwise
in which apn = Fourier amplitude, Wn= random phase angle ranging of
0-2T , and tp= time parameter as illustrated later. In Fig.2, Fourier
spectrum represented by Eq.4 is illustrated only in the positive frequen-
cy range. Fourier inverse transform of Eq.4 yields +the following
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equation.

o0
Yalt) = [0 Fp(£)-exp(iznft) df = Qn(t)-cos(2mint +Y¥y)

0

in which Qun(t) = the envelope function of ynit) and is represented by

2an sin 2mAL ' (t-tp)

t) = . {8
Qn( ) p £ - tn L0

~—

where typ= time parameter, which is the same as in Eg.4. In Fig.3,
time history yn(t) as well as its envelope function Qp(t) are illus-
trated, in which Qn(t) has the maximum value da Af' at the time t = tn.

Now, we extract 217 discrete Fourier spectra located in the both
sides of k-th frequency fk from N spectra X(fk) of the eathquake motion,
as shown in Fig.4(a). They are approximated by the spectrum of a
group of hamonic waves, as shown in Fig.4(b). By comparing the ampli-
tudes X in Eq.2 with ap, in Eq.4, following equation can be obtained.

k+7-1
= ] IXK! ) 21)M2 (1)
oz

Similarly, phase angles of Eq.2 and 6 correspond as follows
-am(fy~fp)ty + ¥ = ¢5 , J=k-1, +een., k*1 (8)

Eq.8 consists of (27+1) equation including unknown parameters tn and ?
Then, estimated values of the unknown parameters, denoted by tn and 45 s
can be determined by making use of the maximum 1likelihood method, as
follows

b= (9)
~ k+l
= - Z (fj"fn) (¢J_¢D) /2 z (fj-f )
3=k-1 j=k~1
A
= [ 73 (Moagor * crecc ¥ My-3)/2 Z 21/ (10)
Jj=1 =1

in which Aw= 27 Af and ¢ is represented by

_ k+1
on= ] ¢3/(21+ 1) (11)
J=k~1

It should be noted that %n in Eq.10 is the peak appearing time of the

envelope of the group of harmonic waves which is an approximation of the
discrete spectra of earthquake motion, while the right hand side of the
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same eguation consists of the weighted average of (21+1) phase differences
around the center frequency fn = fk . It is found from EqQ.10 that the
phase differences nearby the frequency £y are closely related to the
arrival time of the peak of the power of the wave components nearby that
frequency, since the envelope function represents the time variation of
the power of the wave. If we may divide the frequency range into a
number of subdivided regions and approximate the discrete spectra of
earthquake motion in each region by that of a group of harmonic waves, it
can be verified that the probability distribution of phase differences is
closely related to the envelope of time history.

NONSTATIONARY SPECTRAL ANALYSIS USING PHASE DIFFERENCES

The strong motion accelerograms obtained from the 1968 Tokachioki
earthquake and its aftershock are used for this study. The accelerograms
have been recorded on Hachinohe and Aomori sites located on .alluvial
grounds (Ref.7).

The arrival time, %n’ derived in preceding chapter may be influenced
by the number I of extracted discrete spectra. It is examined here how
7 influences the form of the time history. Fig.5 1illustrates original
time history of Hachinohe and approximated ones in each case of 7 = 1, 2,
4, and 8. It is found from these figures that even if 7 is consider—
ably large, approximated time history may fairly reflect the character-
istics of original record.

Using the arrival time %n.’ shown in Eq.10, the nonstationary
frequency content for the strong motion accelerograms is evaluated.
Fig.6 and 7 illustrate ZTn for the accelerogram of Hachinohe, on the
time-frequency plane, in the case for 7= 1 and 8, respectively. From the
figures, it is found that T, for 7 = 1 fluctuates excessively while £, for
1 = 8 varies much more smoothingly with frequency. It is suggested from
this that large 7 is better to evaluate the nonstationary frequency con-
tent of earthquake motions. Thus, 7= 8 will be used in the following.

In Figs.7, 8, and 9, %n of Hachinohe, Aomori, and Aomori
(aftershock), respectively, are plotted, together with the contour
representation of evolutionary spectra by Kameda (Ref.1l). The non-
stationarity of frequency content does not appear too much in Fig.7, while
it is recognized in Figs.8 and 9, by observing the variation of %11 with
frequency. In each figure, fn cbtained from phase defferences shows a
fairly good agreement withﬁevolutionary spectra as a whole. It 1is
concluded from this, that tp obtained from phase differences is useful for
an analysis of nonstationary earthquake motion.

CONCLUDING REMARKS

By making use of the approximation to discrete spectra by a group
of harmonic waves, it has been verified that the probability distribution
of phase differences is closely related to the envelope of earthquake
motion. The relationship has been applied to analyze +the nonstationary
frequency content of recorded accelerograms, the results of which have
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been compared with evolutionary spectra. It is concluded that the phase
differences are useful to evaluate the nonstationary frequency content,
since they have agreed fairly well with evolutionary spectra.

It has been suggested that the concept of phase differences is useful
for the simulation of earthquake motions as well as for estimation of
dispersion properties of surface waves and for evaluation of the
earthquake source mechanisms. There is a possibility that the concept
may be applied to such a subject.
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