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SUMMARY

The ground acceleration records of strong-motion earthquakes at
moderate distances from the epicentre and on firm ground are modelled
as a uniformly modulated white noise random process. It is shown that
Fourier transform of the model is az homogeneous random process with
frequency as the indexing parameter, and the probability density function
of the derivative of the phase of the transformed random process depends
upon the first three 'intensity moments'. The earthquake accelerograms of
three strong-motion earthquakes are analysed and the probability density
functions of the derivative of the phase of the transformed random process
are computed and compared with the analytical distribution.

INTRODUCTION

The nature of ground motion at a site during an earthquake is quite
complex. The temporal properties of ground motion are gemerally described
by measured, or simulated, acceleration-time records. The Fourier
transform of the acceleration-time record, which is a complex function
of the frequency, reflects the frequency characterstics of the ground
acceleration. In earthquake engineering, most of the attention has been
focussed on Fourier amplitude in view of the fact that it closely
approximates the undamped response spectra (Refs. 1 and 2). The Fourier
phase has generally been ignored as characterless. Recently the
characterastics of the phase and phase derivative of the Fourier transform
of acceleration—-time records of earthquakes have been examined (Refs.3, 4
and 5). By computing the relative frequency functions of the phase and
phase derivative of the Fourier transform of several acceleration-time
records Ohsaki (Ref.3) came to the following qualitative conclusions:-~

(i) the probability distribution of the Fourier phase angle seems
to be uniform; and

(ii) the probability distribution of the Fourier Phase differences
appears to be normal, or normal like, and resembles the shape
of the accelerogram envelope function.

(I) Director, Thapar Corporate R & D Centre, Patiala, India.
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The theoretical basis of these conclusions was examined by the
author (Ref.5). It was shown that if the earthquake accelerograms are
rcdelled as a uniformly modulated, gaussian white noise, the exact
~robability density of phase and phase derivative of the Fourier transforn
+f the accelerograms can be derived in the framework of random process
theory. The distribution of Fourier phase was shown to be uniform. A
closed form expression was derived for the derivative of the phase
and it was shown that it is not normal. Further it was shown that the
probability density function of the phase derivative depends upon the
first three moments of the intensity function, which was defined as the
square of the envelope function.

In this paper, the probability density functions of the phase
derivative of three major earthquake accelerograms are computed
numerically, and compared with the theoretical distribution. It is
concluded that for strong-motion accelerograms recorded on firm ground
and at moderate distances from the epicentre, a uniformly modulated white
noise represents a satisfactory stochastic model.

PHASE PROPERTIES OF EARTHQUAKE ACCELEROGRAMS

The statistical analysis of earthquake accelerograms (Ref.6), and
the physical models of the source-mechanisms, travel-path and local-soil
suggest that the ground motion may be treated as gaussian (Ref.7). Further
at moderate distances from the epicentre and on firm ground, the
acceleration—time records can be modelled by a uniformly modulated white
noise process of the form

() = o(e) x(1), o< t<T (1)
where Y(t) is the ground acceleration during an earthquake; 7 (t) is the
deterministic modulating function; X(t) is a white noise random process
with power spectral density® ; and T is the duration of the record.

The Fourier transform of Y(t) can be expressed as
Y(w) = Alw) exp[i V(w)] (2)
where Y(®W) is a complex random process withy as the indexing parameter;

A(w) is the Fourier amplitude; and V@) is the Fourier phase; and i =J-1.
It follows from Eqs,(1) and (2) that

el¥ w)]=o0 (3
and
[ ¥l = R ) = B ole) emp[-i6y9)q ae )
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Settingw=w,in Eq.(4), we get

I

0 T 2 B4
Ryg (0) = 227" (1) de=—2
27

T -
3% I(t)dt (3

S

st

, It follows from Eq.(%4) that Y0.) is a homogeneous random process
with p.s.d. - like function
355() =—%r9——1(€3), 0<n< T,
=0, otherwise. (8)
where Qis a 'frequency-like' parameter.

It is clear that V(@) is also a homogeneous random process. It
can be shown that V(w) is uniformly distributed in the range (g 2270
(Ref.5). Let the derivative of V(w) be defined as

Vi = S lim V(wrdw)-v(w), if v(wrlw)> y(w),
dw A0 M
= lim 27+ V(wri)-y(w), if Vv (wrdo)< v(w). (7
Auy+o A

It can be shown that the probability density of V'(¥) is given
by (Ref.5)

2
0 1 1 } (8)

p(v') = { 3 7o DY)
Mo Loeg e 203 (e e R
0 o
where
2
p2=.\{2_ ._Xl__ (9)
Yo
e (10)
w’

0 . . . .
and y: , called the 'intensity moments' , in analogy with the
'spectral~moments', are given by

—ff’—foT ed Tee) de, 3 =0,1,2,.0... (11)
T

Y. =
3

It is seen from Ea.(8) that the distribution of V'(W) is not
normal as suggested by Chsaki (Ref.3). It is also seen that the
probability density function of V' (&) depends on the ratios of the
first three ‘intensity moments' which represent the gross properties
of the envelope of the accelerograms.

NUMERICAL RESULTS AND CONCLUSIONS
To check the validity of the theoretical results derived in the

preceding section, several strong-motion earthquake accelerograms have
been analysed. The envelope of an accelerogram is computed using the
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relation

N2
£) + Y(t) 72 (12)

a2

() =0y

w4

where Y(t) is the Hilbert transform of Y(t) (Ref.8). The intemsity
moments ¥:, j=0,1,2 are then computed from Eq. (11). The theoretical
probability density function of the phase derivative is computed from
Zq.(8) using these intensity moments.

The Fourier phase of the accelerogram, VW), is computed
numerically using FFT algorithm. The derivative of the phase, v'w), is
computed from Eq.(7). Assuming V'(®W) to be an ergodic random process,
the probability density function of V'(W) is computed from the sample

function.

The accelerogram, the computed emvelope, and the theoretical and
computed probability demsity functions of the phase derivative of the
following earthquake records are shown in Figs. 1 to 3:-

1. E1 Centro , May 18, 1940, SOCE ;
2. Taft , July 21, 1852, N21E: and
3. Parkfield (Shandon) , June 27, 1966, N8SE.

It is seen that for the first two accelerograms, which represent
ground motion on firm ground at moderate distance from epicentre, the
agreement between computed and theoretical probability density function
is good. It is concluded that a uniformly modulated white noise model
is adequate for such accelerograms. The third accelerogram exhibits
narrow band characterstics, and therefore it can be modelled as a
uniformly modulated white noise random process. The agreement between
theoretical and computed probability density function is poor. It may
also be noted that computed probability density functions exhibit
bi-modal distribution. It is not possible to explain the second peak.
It could be numerical.

ACKNOWLEDGEMENT

The assistance of Dr. S. Basu, University of Roorkee, in the
computation is gratefully acknowledged.

REFERENCES
1.  Hudsom, D.E. (1962), "Some Problems in the application of

Spectrum Techniques to Strong-Motion Earthquake Analysis'.
Bull. Seis. Soc. of Amer. , Vol.52 , No.2.

3 ]

Jenschke, V.A. (1970), "Relation Between Response and
Fourier Spectra of Shock Functions', Int. J. Solids
Structures, Vol.6, pp. 1259-1265.

552



Ohsaki, V. (1979), "On the Significance of Phase Content
in Earthquake Ground Motiom, Earthquake Eng. Struct. Dvn.,
Vol. 7 , pp. 427-439.

Izumi, M., T. Watanbe, and H. Katukura {1980) "Interrelation
of Fault Mechanisms, Phase Inclinations and Nonstationarities
of Seesmic Naves', Proc. 7th World Conf. Earthquake Eng. ,
Vol.l, pp. 89-96.

Nigam, N.C. (1982), " Phase Properties of a Class of Random
Processes" , Earthquake Eng. Struct. Dyn., Vol. 10, No.3,
pp. 711-718.

Sargoni, G.R. , R. Alarco,n, and J. Crempin (1980}, "Gaussian
Properties of Earthquake Ground Motion', Proc. 7th World Conf.
Earthquake Engg., Vol.2, pp.491-498,

Rasco'n, 0.A., and C.A. Cornell (1969), "A Physically Based
Model to Simulate Strong Earthquake Records on Firm Ground",
Proc. 4th World Conf. Earthquake Engg. Vol.l, pp.84-86.

Nigam, N.C. (1983), Introduction to Random Vibratioms,
The MIT Press.

553



(++2) Q31INdWOD ‘(—) AMO3H1 ‘3IAILVAIYEA 3SVYHdA 40 ALISN3Q
ALINIBYB0¥d (?) ‘3d0TIANT (9) WVH908I 1320V (P) 3005 0%6L°8L AVW  OYIN3D 13 1’614

om: 08 09 oYy

i 1 i 1 . ] L

(d TV v,

()

‘23S Nt 3WIL

0y [4% Yt o1 8 0
{ " L " 1 " 1 ' 1 " Q
(=
o
@
3 >
=
L2
Q
(9) !
03S NI 3wl
oY (4% Y2 91 8 0\
1 1 H 1 1 1 | 1 1 L m
© o
L F
L &
8
(e

554



(+++) Q3INAWOD ‘(—) A¥O3HL ‘SAIIVAINEA 3SVHd 40
ALSN3Q ALNEvEOYdd () $3d0T3ANS (Q) ‘WYdO0H¥3N3DIV (®) MYLS 266L°LZ AINr 14Vl 2614

001 08 09 ! oY
(- . i " 1 L L M o
-o.¢‘-o-|o0¢-o-n.-¢--...- K ¥ [}
-.o..-.. © he)
WI
o
o
®»
(@) ﬁ
'23S NI 3ANWIL
oy A V44 9l 8 0
L . 1 A 1 N i . 1 N o
o
S
i )
2 2
o
() 5
'03S NI ANWIL
07 43 72 9 ¢ 0
\ . | X i N 1 N ] 1 w
o
[q]
- >
-
o
e
a
() !

555



(--+) Q31NdWOD “(—) AYO3HL 3AIVAIM3G 3SVHd dJO  ALSN3Q

ALIMEVE0dd (2)
*3d013ANT  (9) ‘WVYH¥90831300V (®) 368N 996L°4Z 3IANNL ‘( NOGONVHS)

Q1313M8vd €614
08 49 8% A z€ 9l 0
i R i L 1 el by 1 et %
oao .o .o . 0 Lo
.. . >
. o
L~ N
* (@]
(3) i
"03S NI 3WIL
aql 08'ZL 096 079 0zE 0o
L N 1 N 1 1 " 1 N : 2
(@) [
(&) "
wy
i @
>
o r
P~
o
(q) i
‘23S NI 3WIL ,
9l 09'Z1 096 07’9 0zt 0 1
l 1 1 " 1 N 1 PR 1 " o
3
i [l
S g F
o
(e) s






