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SIRMARY

A relatively simple and straightforward procedure is given for repre-
senting analytically defined or data-based covariance kernels of arbitrary
random processes in a compact form that allows its convenient use in later
analytical random vibration response studies. The method is based on the
spectral decomposition of the random process by the orthogonal Karhunen—Loeve
expansion and the subsequent use of least-squares approaches to develop an
approximating analytical fit for the data-based eigenvectors of the under-
lying random process. The resulting compact analvtical representation of
the random process is then used to derive a closed-form solution for the
nonstationary response of a damped SDOF harmonic oscillator. The utility of
the method for representing the excitation and calculating the mean square
response is illustrated by the use of an ensemble of acceleration reccrds
from the 1971 San Fernando earthquake.

INTRODUCTION

A state-of-the-art review of current probabilistic methods and their
structural and geotechnical applications indicates an active interest and
growing recognition by designers of the significance of probabilistic
approaches in engineering applications, particularly in the areas of struc-—
tural reliability and risk analysis. A major part of the impetus behind
this strong interest in probabilistic methods is the need to quantify the
safety margin in critical engineering facilities subjected to stochastic
dynamic environments.

Among the major impediments to a more extensive use of probabilistic
methods in structural dynamics applications, particularly those dealing with
seismic excitations, are (1) the problems involved in the construction and
representation of statistical models based on actual earthquake records, and
(2) the computational difficulties encountered in subsequent analytical
random vibration analyses to determine closed-form solutions for the response

covariance.

This paper presents a procedure for the compact probabilistic represen-
tation of earthquake ground motion records in terms of their covariance
kernel, while at the same time allowing the use of the resulting character-
ization to conveniently perform analytical random vibration studies.
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ORTHOGONAL DECOMPOSITION OF RANDOM PROCESSES

Consider a nonstationary random process {x(t)} for which a statistically
significant number of member function records xj (t) are available. The
covariance kernel for x(t) can be found from

K (tnt) = E{[x(e) —u ()] [x(ty) - u (£)]} 1)

where E{.} denotes the ensemble averaged value of the quantity within the
braces and px(t) = E[x(t)].

It is shown from functional analysis that according to Mercer's theorem
(Ref. 1), a function Kff(tl,tz) which is symmetric, continuous, and non-
negative definite in the square region 0< 1ty <ty and 9 <ty < tpay may
be expanded in an absolutely and uniformly convergent series:

- .

Rep(et) = 1 & 8,60, () )
k=1

where the ¢'s and the A's are eigenfunctions and eigenvalues, respectively,

of the integral equation
d(t)) = if (t.,t)6(t.)dt (3)
by o ff 1’72 22772

A direct consequence of Mercer's theorem is the orthogonal decomposition
of a random process f(t) with a covariance function Kgg(ty,ty) by the ortho-
gonal Karhunen-Loeve expansion (Ref. 2):

£(e) = 2 L Bt )

where

Itmax

& =

£(D)9, *(0)dt

and the ¢k(t) are a complete orthogonal set satisfying

t
max
* =
£ 9; (D)0 *(e)de = &, , (5)
where ¢j*(t) = the complex conjugate of ¢j(t), and aij is the Kronecker delta.

SPECTRAL DECOMPOSITION OF EARTHQUAKE RECORDS

Applying the results of the previous section to the case of earthquake
records, let the discretized ground acceleration measurements be processed
as indicated in Eq. (1) to generate the covariance matrix [C], which is a
symmetric square matrix of order n. :
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The spectral representation for such a matrix is

1.
K
- And - T s
[cl= ) X 5. 0, + [E] (6)
T - G | k
i=1
where Ay, Ap,..., Ay are the real and positive eigenvalues of [ (]}, and
Pi> P2s---» Pi are the corresponding normalized eigenvecters of [C] such that

p; P =845, 1= 1,2,...k, and {Ek} is 2 matrix of residual error correspon-
ding to truncating the series in Eq. (6) after term k.

Notice from (6) that if the number k of eigenvectors needed to recon-
struct [C] with adequate accuracy is much less than the order n of [C], a
significant reduction is obtained in the amount of data needed to represent

[c.
ERROR ANALYSIS

A convenient scalar-valued measure of the truncation error in Eq. (5)
is given by the normalized "emnergy" error defined as

€ = Jk/JO s (7

where Jy and J, are the sum of the squares of the elements of [Ey] and [C],
respectively.

It can be shown (Ref. 3) that g is related tc the eigenvalues of [C] by

(L
g =1- ALl A
K =1 3/ \4=1

In practical cases, only a small number k of L's is likely to be com-
puted. It then becomes important to establish upper and lower bounds on
the extent of the normalized error corresponding to the use of a different
number m of A's to reconstruct [C]. Then bounds for the case where m < k are

1o

) ;k=1,2,...n. (8)

Ml el
() =1l-—F5"7 5 (9)
min Xl+ Ayt +o-k+ DAy
and
a2 el
(Em)max =1i-7 3 2 (10)
Al + xz + ... F xk

ANALYTICAL REPRESENTATION OF COMPUTED EIGENVECTORS

As a further step in the data condensation procedure for representing
the characteristics of recorded earthquakes in a probabilistic format, it is
convenient to determine an approximate analytical expression for each of the
eigenvectors to be used for reconstructing [c].
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Among the various functions that can be employed to approximate the
eigenvectors, Chebyshev polynomials are most suitable due to their ortho-
gonal nature and the fact that their form leads to convenient analytical
expressions for the covariance kernels of the dynamic system's response.

Let an estimate of [C] based on using k eigenvectors in Eq. (6) be
denoted by [Ck]:

& T
(Gl = izl A Pi By an

Using least-squares techniques to fit each P; >

mi—l
p, (£) = B (r) = jzo Hy T, (eh) s (12)
where
t! = 2(t/tmax) -1 (13)

the T's are Chebyshev polynomials defined as

Tn(i) = cos(n cos—lg) ; -1<g <1, (14)

and H;; is the coefficient of the Chebyshev polynomial of order j associated
with eigenvector pj. The Hj; can be found by using the orthogonality pro-
perty of the T's.” Making use of Eq. (12) then

K mi-l mi—l

Ctot)l= 7 &, 1 ] m, H, T, (¢

: )T, (£]) (15)
i=1 j=0 g=0 M

1272

where 0 < t, < t s 1= 1,2,
— i — "max

NONSTATIONARY RESPONSE OF LINEAR SYSTEMS

Consider the nonstationary response y(t) of a linear single-degree—of
freedom (SDOF) system, characterized by an impulse function h(t), under the
action of a nonstationary stochastic process {x(t)} whose covariance kermel
is.expressed as Kxx(tl’t2) = [Qk(tl,tz)].

For convenience, assume that the input is a zero-mean process. Then
the covariance of the system output is

t t

1 %2
Ely(e)y ()] = of o}' h(t =1 Dh(t, = 1)K (1,,7,)dt, dT; (16)
~-Zw_t

h(t) = - ;}— e T simt (17
d

with
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where I = rati? of critical damping , Wp = natural frequency, &g = mnVI-—CZ.
Replacing K., in equation (16) by its representation in equation (15), the

covariance of the response will then be given by

m,-1 m,~1
1 'y

e o

E[y(tl)y(tz)] =

. ol d Bij By Yyp(qaty) (18)

1 i=0 =0
where

N 2
X

— _max
T, 6oty = T, P fow (e =ty - €9 )1F; (£)F, (£)) (19)

and Fj(t) are algebraic expressions (Ref. 4) dependent on the dynamic system
parameters.

The mean-square response E[yz(t)]is obtained from (18) by setting
t7 = to = t.
1 2

Note from (18) that the covariance of the response is made up of two
non—-interacting groups of terms: (1) the Hi's which depend only on the
excitation characteristics, and (2) the in's which depend only on the
dynamic system characteristics.

APPLICATIONS

A covariance matrix [C] of order (501 x 501) representing the first
20 seconds of an ensemble of ground acceleration records corresponding to
the 1971 San Fernando earthquake (Ref. 5) was constructed and is shown in
Fig. 1. '

The eigenvectors of [C] were computed and a typical one is shown in
Fig. 2. The least-squares fit ﬁi(t) of a typical eigenvector is shown in
Fig. 3 and the corresponding erfor between p; and ﬁi is shown in Fig. 4.
Note from Fig. 4 that the main contribution to the mismatch between pi and
ﬁi is in the high frequency components.

Using the procedure indicated in Eq. (11) to represent [C.], one
obtains the results shown in Fig. (5) corresponding to the surface associated
with the approximate covariance matrix [Cpg] based on using k = 25 exact
eigenvectors.

Following the steps indicated in Eq. (15), least-squares techniques are
used to obtain analytical expressions for the needed exact eigenvectors and
the corresponding surface[czs] based on using k = 25 approximate eigenvectors
B; is shown in Fig. 6.

A measure of the rate of convergence of [Ck] which is based on a subset
k of the n eigenvectors to [C] which corresponds to using all n eigenvectors
is shown in Fig. 7, where the indicated bounds on €} are based on the expres-
sions in Eq. (9) and (10). It is obvious that within = 25 terms, the
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reconstructed [l is a very good estimate of the exact [C]; in other words,
the first 25 (out of 501) eigenvectors embody practically all of the statis-
tical information contained in [C].

To illustrate the validity of the method under discussion for probabil-
istic structural dynamics, the procedure indicated in Eq. (18) is used to
analytically determine the transient m.s. response of a linear, damped
SDOF harmonic oscillator to the stochastic excitation represented by [C].
Figure 8 shows typical analytical results (Fig. 8c) and comparable numerical
integration results based on using the exact [C] (Fig. 8a) and the approxi-
mating [C] (Fig. 8b).

The use of the results of this study to generate probabilistic response
spectra is illustrated by the results in Fig. 9 where the extreme values
Sy = vmax E[y2(t)] are plotted as a function of the oscillator period and
damping parameter.
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FIGURE 1. COVARIANCE MATRIX [C] SURFACE FOR THE SAN FERNANDO EARTHQUAKE
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FIGURE 5. APPROXIMATE COVARIANCE [Ck] SURFACE BASED ON USING k = 25
EXACT EIGENVECTIORS
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FIGURE 6. APPROXIMATE COVARIANCE [ék] SURFACE BASED ON USING APPROXIMATING
ANALYTICAL EXPRESSIONS FOR k = 25 EIGENVECTORS
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FIGURE 9. EXTREME VALUES OF THE t
NONSTATIONARY MEAN-SQUARE FIGURE 8. NONSTATIONARY RESPONSE
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