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SUMMARY

The relationship between the nonstationary character of seismic waves
and information obtained from the Fourier analysis of the waves, including
information on phases, is presented. Several applications of the phase
information to earthquake engineering problems are also shown.

INTRODUCTION

For one function of a given seismic wave, two complex functions, the
Fourier transform in the frequency domain and the complex envelope in the
time domain, can be introduced to present its properties. Although in
wave analyses, information on the amplitudes of the functions is generally
utilized in order to describe the nature of waves, information on the
phases is not used sufficiently. This may be due to the complicated
characteristics of phase spectra. For such phases, the authors have shown
that their meanings are made clearer if the derivatives 27mfgr(t)=dii(t)/dt
and tgr(w)=dd(w)/dw are considered, where Y(t) and ¢(w) are the phases of
the complex envelope and the Fourier transform respectively, and that the
nonstationary nature of seismic waves can be efficiently explained by
means of fgr(t) and tgr(u))."‘zf3

In this paper, the meanings of phases fgr(t) and tgr(w), the relation
between the nonstationary nature of seismic waves and the phases, and the
applications of the phase information to earthquake engineering problems
are summarized.

TWO COMPLEX FUNCTIONS f(t) AND F(w), AND THEIR PHASES fgr(t) AND tgr(w)

For a given time function f(t), we cam introduce two complex
functions I(t) and F(w). The method to calculate the complex functions
f(t) and F(w) is shown in Fig.l. PFrom F(w), the Fourier transform of
f(t), F(w) is determined to be a causal function in the frequency domain.
Accordingly, the real and imaginary parts of £(t), which is obtained by
the inverse Fourier transform of F(w), must satisfy the Hilbert transform
relation. Therefore, imaginary part of f(t) is the Hilbert transform of
f(t), and thus Fig.l becomes the method to calculate both the complex
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envelope f(t) and the Hilbert transform of f(t).

Functions fgr(t) and tgr(w) are defined as the derivatives of phases
¥(t) and ¢{w), as shown in Fig.2. The meanings of these functions are
also shown in the figure. As shown in the figure, the first and second
moments of ]f(w)[z, which are the center of gravity and the width of -
‘f(m)lz respectively, can be determined by the values of f§r(t) and if(t)F
in the time domain. Therefore, the contribution of |E(t)|® to |F(w)|?,
that is the time-dependent character of lF(w)[z, can be understood in
terms of fgr(t). Similarly, the first and second moments of the envelope
if(t)lz, which are the center of gravity and the width of ]f(t_:)l2
respectively, can be determined by the values of tgr(w) and [F(wllz in the
frequency domain. Accordingly, the contribution of lF(w)[z to [f(t)‘z,
that is the frequency-dependent character of !f(t)[z, can be understood in
terms of tgr(w).

In general, fgr(t) and tgr(w) fluctuate in each 'domain, as shown in
Fig.3. However, the fluctuations of fgr(t) and tgr(w), whose ordinates
are frequency and time respectively, look meaningful. Namely, there seems
to be a certain relation between the fluctuation of fgr(t) and the change
of the frequency contents of f(t). The rough displacement on the time
axis of the wave components within a certain frequency range can be
understood by the value of tgr(w). Therefore, tgr(w) and fgr(t) become
measures by which the nonstationary nature of seismic .waves can be
evaluated numerically.

It is important to note that these meaningful fluctuations of phases
fgr(t) and tgr(w) can be obtained if and only if the time function £(t)
possesses clear nonstationary characteristics., As is shown in Fig.4, for
most strong ground motions, it is difficult to determine such
characteristics, because, generally, there is no such clear nature
involved in the motions.

a time function FFT Fourier tranform of f(t)
£(t) X F(w)

F F)=2F(w), w0
te— Real[Ff(t)] e E(w)=F(w) T w=0
F(w)=0 , W<0
T ) ¥ F(w)
FFT
(inverse)
£ fv-L(y dwt, 1{=. . iwe
le— Imag[E(t)} f(t)—Z_Tr U{w) 2P{w)e dm_ﬁ Fwye ™ taw
1{ f(z
Hilbert =f(t)+i[7?{m‘zsg 1]
transform —oo
of where
£ U(w) :step function

Fig.l FLOW CHART to Calculate £(t) and/or the Hilbert Transform of ()
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Fig.2? Simple Example of Fluctuations fgr(t) and crgr(w)
The shape of [£(t)| can be deduced roughly from the fluctuation of tgr(w) weighted

by [F(w].

fluctuation of fgr(t) weighted by [E(t)].

INFORMATION

OBTAINED FRON

WAVE ANALYSES USING
PHASES fgr(t} and tgr(w)

most strong ground wotions
( generally random-like motions
with finite durations )

Similarly, the shape of )F(m)| can be deduced roughly from the

waves with definire time and/or frequency dependent nonstationary characteristies

The characteriscics can be evaluated pumerically
in cerms of fgr(t) and tgri{w). ( see Fig.3 )

It will be impossible co extract che clear rime

and frequeacy dependent nonstationary nature from
fgr(t) and tgr(w), since these fluctuations alse

look like raodom. Only the displacement and duration
of envelope |E(t)]? can be extracted from tgr(w).

Fig.4 Information extracted from wave analyses using phases fgr(t) and tgr(w)
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APPLICATIONS OF PHASE INFORMATION

Some applications of the phase information to earthguake engineerin
problems are summarized in Fig.5. 8

For the wave analyses of seismic waves, fgr(t) gives information on
nonstatiophary nature similar to the time axis of a ruﬁning spectrum
because fgr(t) represents the contribution of ()2 to [F(u) 2 ?
Therefore, fgr(t) becomes a measure which numerically preéents;t}.xe time-
dependent structure of the spectrum lF(w) 12. ;

Because the change of frequency contents can be examined by fgr{t)
it may be possible to observe the stiffness degradation of structures ’
subjected to strong ground motions in terms of £gr(t). An example is
shown in Fig.6. The acceleration was recorded on the 9th floor of a 9-
story SRC building during the Miyagi-oki Earthquake in Japan in 1978.

In the figure of fgr(t), the value of fgr(t) fluctuation becomes smaller
with the lapse of time. This change of fgr(t) seems to give information
on the stiffness degradation of the building during the earthquake.

In general, frequency components interfere with each other, and the
Fourier spectrum is deformed by the interferences. As fgr(t) is
determined for each time, it will be possible to evaluate the frequency
contents which are not affected by the interferences among different
frequency components and/or among the same frequency components with
different phase angles. An example is shown in Fig.6. 1In the figure, the
trough seen in the Fourier spectrum around 1.1 Hz disappears in the
density of fgr(t). The difference of the demsities of fgr(t) for two
intervals, from 0 to 10 s and from 10 to 20 s, well explains the change of
the acceleration with the lapse of time. It will be useful particularly
for the analyses of microtremors with considerably long durations to
utilize fgr(t), which expresses the transient nature of frequency contents.

As mentioned above, the time-dependent character of frequency
contents can be determined in terms of fgr(t). It is also possible to
simulate a nonstationary seismic wave by assuming the fluctuation of
fgr(t).3 In fact, the wave in Fig.3 is a simulated ome to produce the
fgr(t) characters which are shown by the broken and dotted lines imn the
figure of fgr(t). As the simulated wave possesses a definite
nonstationary nature, and as it is possible t¢ simulate many such waves, a
set of random waves can be obtained which will be useful for random
vibration and nonlinear response problems.

For the wave analyses of seismic waves, tgr(w) gives information on a
nonstationary nature similar to the frequency axis of a running spectrum,
because tgr(w) represents the contribution of |F(w)]? to [E(e)]3.
Therefore, tgr{w) becomes a measure which nu:mericallz presents the
frequency—-dependent structure of the envelope \f (t)l .

The dispersion of lf(t) lz becomes a measure of the duration of £(t).

Therefore, from ot(w), information on the frequency—dependent duration
can be obtained. In Fig.7, the frequency-dependent durations of a seismic
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wave ( El-Centro NS ) and a simulated wave to possess the same velocity
response spectrum as that of the seismic wave are shown. In the figure,
two horizontal lines show the durations determined by the maximum values
of the waves. The great difference between both durations of the seismic
wave, which is not observed in the simulated wave, may possibly express
the character of the earthquake motion well.

The meanings of the phase of transfer functions are also made clearer
if their tgr(w) are considered. 1In Fig.8, the tgr(w) of SDOF vibratory
systems are shown. The phase transfer functions have peaks at natural
frequencies similar to the absolute values of transfer functions. The
total time shift of a response wave to a corresponding input wave is
determined by the phase transfer function weighted by the amplitude of the
transfer function. In the right hand figure, where the abscissa
represents the natural frequencies of the SDOF systems, broken lines show
the time shifts calculated by the transfer functions assuming that the
input wave is a white noise, and solid lines show the time shifts for the
seismic wave input shown in Fig.7.

Similar to the simulation of nonstationary waves based on fgr(t), it
is possible to simulate nonstationary seismic waves assuming the
fluctuation of tgr(w) in the frequency domain. Similarly, a set of random
waves with a definite nonstationary character can be obtained which will
be useful for random vibration and nonlinear response problems.

CONCLUSIONS

In this paper, the Fourier analyses of nonstationary seismic waves,
the relation between the nonstationary character and phases introduced in
the Fourier analyses, and applications of the phase information to
earthquake engineering problems are summarized.

It is explained in particular detail that the nonstationary nature of
seismic waves can be evaluated numerically by phases fgr(t) and tgr(w).
Since fgr(t) and tgr(w) can easily be calculated by FFT as shown in Fig.l,
these quantities will become simple but sufficiently good measures
expressing the nonstationary nature of seismic waves.

The considered ways to apply the phase information to earthquake
engineering problems are summarized in Fig.5.
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