IDENTIFICATION OF THE EARTHQUAKE GROUNG MOTION
AND ITS NONSTATIONARY STRUCTURAL RESPONSE
WITH THE AID OF PATTERN RECOGNITION TECHNIQUE

K. Suzuki (1)

SUMMARY

This report involves two contents and deals with an identification of
nonstationary characteristics of strong earthquake motions and associated
structural responses. Smoothed patterns of running power spectral demsity
(RPSD) expressed on time- and frequency plane is introduced for the identifi-
cation which is based upon the idea of pattern recognition technique. When
structural response behaves nonstationarily depending on ground motion charac-
teristics and/or time-dependent structural characteristics, another convenient
method can be applied. In this method, trajecory on a complex variable number
plane can quite well represent nonstationary structural response features.
Some examples are demonstrated for both cases.

INTRODUCTION

There have been reported several methods of representing nonstationary
time- and frequency dependent random motion characteristics. Most of them
proposed in the past have intended to give nonstationary spectral representa-
tion in time- and frequency domain such as "evolutionary spectrum’” (Ref. 1),
"instantaneous spectrum" (Ref. 2), and "generalized spectrum" (Ref. 3).

In this report, running power spectrum density (RPSD) function S(f,w) by
Mark (Ref. 4) is utilized which can be written as

’)/[:{ZL'(r)}zdz- Q

where w(t) means a kind of weighting function in time domain. Box-car type
w(t) is used here for practical simplicity. RPSD functions defined by egq. (1)
can be described as two dimensional patterns taking time £(s) and frequency
f(Hz) as the ordinate and the abscissa respectively. Spectrum computation
procedure introduced here is mainly based on Akaike's algorithm (Ref. 5) which
is effective for nonstationary analysis. Spectral curve shape obtained through
this algorithm can usually provide us much more smoothed feature compared with
that through FFT algorithm. Figure 1 (a) depicts a typical example of computed
RPSD pattern for real earthquake record of ground acceleration. In this fig-
ure shader digit stands for intensive power while fainter one for weak power.
The most intensive peak power value is normalized to unity and any spectral
value for an arbitrary point [t(8), f(Hz)] on the time- and frequency plane
should be adjusted to one of ten levels classified with a logarithmic scale.
Although this RPSD pattern gives us nonstationary characteristics for a
specific ground motion of an earthquake like Fig. 1(a), it still remains con-
siderably rough feature particularly along the time domain. Therefore, an
adequate filtering operation is required in order to remove these surface
ruggedness. By applying the idea of the image technology, smoothed filtered

S([. (D) =2n<(§;[:1(f)u'(f-T)e'i“"dz'
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Figure 1 RP3D Pattern of Earthquake Motion [Taft N29°E] (a)
and Its Smoothed Pattern (b)

pattern sm(t,f7 can be formulated from the original pattern s,(Z,f) with the
aid of convolution integral described as

sult, f)= fu ) [ R(t—a, f~B)solt, f)dads (2)

where Z(f,f) is a kind of transfer function defined on (Z,f) plane the form
of which should be adequately selected according to the required filtering
effect. Since "low-pass filtering effect" is expected in this study, trans-
fer function could be proposed as
2

h(t,f)=hoexp{—i%;f-)} (3)
where %, means a constant giving smoothing effect. For convenience' sake of
numerical computation, %(f,f) has to be assumed to have a digitized formula-
tion as h(sy, ;)32 = 1,2,..... o0 J = 1,2,0000. ,mM] where n X m means a size
of matrix with %espect to this digitized transfer filter. Figure 1(b) shows
thus computed smoothed RPSD pattern corresponding to the original RPSD in Fig.
1(a).

IDENTIFICATION OF NONSTATIONARY EARTHQUAKE MOTIONS USING RPSD PATTERNS

Based on the RPSD pattern above introduced, any nonstationary earthquake
record can be identified taking following three basic features as representa-
tive renarks;

(1) number of dominant RPSD peaks (two peaks at most considered)

(2) degree of RPSD's spread around dominant peaks (either in time- or
frequency domain)

(3) relative location of two peaks (if two peaks exist)

These remarks are conveniently incorporated into "peak function" described as

plt, f)=gr(t)gelf) %)
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Figure 2 Examples of gT(t) and g-(§)

where gF(f) means time-dependent shaping function which shows nonstationary
power spectral envelope while ¢.(f) does power distribution along frequency
domain. It was assumed in this study that gT(t) and gF(f) are given as fol-
lowing representation refering several previous works (Ref. 3, 6) concerning
nonstationary ground motion analysis,

NS YR !
gr(t)= / eXDl 28?2 }fmax('{:)
(5)
L+ 28 {1 /(8 1

9= AT+ 28 ITENTE Fon ©)

In these equations £ and { are taken with respect to evolutionary shape of

the individual RPSD peak while ¢,.,.(8), f,,,.(¢) and f (2) are certain deter-
PP . ) o ~

ministic functions of £ and z. Typical examples of g,(¢) and gF(j) are

demonstrated in Fig. 2 taking £ and { as parameter. epresentative values

for & are adopted 0.03 and 0.1 and those for g, 0.2, 0.5 and 0.7. When two

peaks have to be considered, equation (4) can be modified as

1
pult, f)={1>x<t,f)+/”1’2(f’f)}pmx(8) ©

by simple superposition of two function p;(%,f) and p,(¢,fF) where B means
ratio of two representative peak intensities. Once realistic values on ¢ and
z are given and an adequate shape of peak functions considering general chara-
cteristics of actual strong ground motion is determined, a standard reference
RPSD pattern can be generated artificially for the convenience of identifica-
tion procedure to be followed.

Identification in the study is carried out according to the idea of the
pattern image recognition techmique. Concept of "complex resemblance method"
which has been utilized in the field of image techmology (Ref. 7) is intro-
duced. Applying this method, correlation (resemblance) with respect to a
standard RPSD pattern @Q(t,f) in (£,f) plane can be evaluated fairly easily
by "complex resemblance function" S* determined by

- Jzzere nf +{zpere o) +(gzere o) -
IR(t, Al

In this representation, ¢g, ¢ and ¢, are obtained by using orthogonal rela-
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tionship among three functions; fy, fi and f; as

_f‘__+ f2 S Sfe
go= o g Al lel Al (2] (8)
IR PTG T 20-0)
whereby € is evaluated by
g)!(;‘)frfz
= TAITAT 9
Functions fg, f1 and fp themselves are calculated as
s e 00 Y 90, )
fo=QU f), h= ETR fo= of (10)

In these equations ||f;|| means the mathematical norm for functions f; (i = 0,
1, 2) within (¢,f) domain. Consequently, it can be said that S* in eq. (7)
phisically means a space correlation function between a specific RPSD pattern
R(%,f) and the artificial standard pattern @(%,f). As a result, once R(%,f)
with respect to some actual nonstationary ground motion is calculated, iden-
tification can be easily performed with the aid of the resemblance function S%,
Figure 6 explains schematically the idea of this pattern recognition
aided identification of earthquake motions proposed in the study (Ref. 8).
The author provides in this investigation representative 8 standard categories
for §(t,f) half of which are for double peaks case. The results of identifi-
cation for several strong earthquake
accelerations recorded in U.S. and
Japan according to this procedure

are summarized as shown in Table 1. Table 1 Some Results of Identifica-

tion for Earthquake Motions

Category | Peak Shape Identified Earthquake Motions
I —a ?fgé Managua NS,EW, San Fernando NS
f(H) 1-b i,i‘:)‘? San Fernando (a) $08°W
RPSD pottern Sl
1o be ldentified Kushiro NS, Miyagiken-oki S,
Ts) £=0.2 Tokachi-oki EW, Amagasaki UD,
I-e £=0.2 San Fernando (b) N23°E, San Fer-
nando (c) EW, Managua UD
s; 5 5 5 comolex 4 £=0.03 | Niigata NS,EW, Kushiro EW
- o San Fernando (a) S82°E, UD,
/ 1 \\\\ resemblance $=0.2 San Fernando 2cg
{5' =0.1 | raft s69°F, n21°F,
f f -a €1=0.7 | £] Centro NS,EW, E1 Centro (d)
stondord { &2 =01 NS,EW,UD
pattern magel :_2 ="'-1’
=40,
f . {C: =0.5 Amagasaki Tr.,
1 I -5 % —0.03 | San Fernando gbg S61°E,
{ 2 =hY San Fernando {c) ns
{2 =0.5
category | cotegary 2 - category n clossifies .
categortes { £ =0.03
- §1=0.5 | Tokachi-oki NS,
{52 =0.1 San Fernando EW
. . . {2 =0.5
Figure 3 Schematic Conception of TR —
Pattern Recognition and H-d {Cl =0.2 m;g:gkgoi T°kzg‘:“c’§l‘;n2°'(e)
Identification {g: =g; N21%E, San Fernands ) i
2 =0.
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APPLICATION FOR THE ARTIFICIAL GENERATION OF NONSTATIONARY GROUND MOTION

Once several standard RPSD patterns have been established, we can inver-
sely generate nonstationary ground motion earthquake which should belong to
a specific category corresponding to the standard RPSD pattern. Generally
nonstationary earthquake motion Y(t) can be expressed by ’

Y(t)= 5 XU, foleos(2fnt + 0r) (11

where X(t,f;,) 1s the Fourier transformed amplitude with respect to a specific
discrete value for [, and Qn is a randomly distributed phase angle. It can
be assumed that X(Z, n) is given by

X (¢, f)=C-vQ(¢, /) (12)

in which C is a constant and Q(t,fﬁ) is an artificial standard pattern. In
Fig. &4 examples of thus generated nonstationary earthquake motioms which is
accompanied with the corresponding RPSD are depicted for a single and double
peak cases. Satisfactory good correspondence can be observed. Such a corres-
pondence can be recognized for any other categories established in Table 1.
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Figure 4 Standard RPSD Patterns and Corresponding Nonstationary
Artificial Earthquakes for Single and Double Peaks

TRAJECTORY OF NONSTATIONARY RESPONSE CHARACTERISTICS

Let us here consider the characteristic equation of a single-degree-of-
freedom damped system by using Laplacian operator s as

s2+2Lwos+ o= 13
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where 7 means a damping ratio and wg does a natural frequency of this system.
From eq. (13) characteristic roots can be derived as

s=— LwotivI—Clwo (14)

Using the time shift operator 3 = exp(st) [7; time step of a nonstationary
response process Z(Z) to be analyzed], mapping relation for this transition
which demonstrates relation between sT-plane and Z-plane can be shown in Fig.
5 (Ref. 9).
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Figure 5 Mapping Correspondence between ST-plane
and z-transformed plane

It has become very convenient to apply such representation especially
when we have to treat frequency- and damping variant narrow band structural
response motions. Taking real part as the abscissa and imaginary part as the
ordinate, point P; on s$t-plane in Fig. 6 which corresponds to the state at a
time instant ¢; presents dominant frequency w; and damping z; through the
point (-g1w3T, w1Vl—s§T) in st-plane. If this state P} moves to P, at time
£, as shown in the figure, trajectory PP, corresponds to nonstationary narrow
band motion in which frequency and damping from (w;, Z3) to (wy, Z2). Cir-
cular arcs AiB; and ApB, in Fig. 6 give constant value of wj and wy respec-
tively, while straight lines OP; and OP, give the constant damping Z; and g2
respectively. General representation corresponding to the state (w;, ;) at
any arbitrary time instant Z; can be written as

=V ET VTG
$o= —Ry(sr) Logr )

NUMERICAL EXAMINATIONS AND PRACTICAL APPLICATIONS

Numerical examination was performed by using the simplest nonstationary
structural model, namely, the frequency variant or the damping variant model
having a single-degree-of-freedom. As the frequency variant system, we take
the model whose frequency decreases from 10 Hz to 2 Hz keeping damping con-
stant. Examples of such nonstationary trajectories are shown in Fig. 7. On
the other hand Fig. 8 corresponds to another nonstationary trajectories where-
by damping ratio varies from 0.01 to 0.5 under constant natural frequency.
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Although lines in Fig. 7 do not always
coincide with those corresponding
theoretical straight lines mainly
because of high sensitivity of damping
characteristics, distinctive nonsta-
tionary response behaviour can be
achieved. In contrast with this case,
trajectories for damping variant sys-
tems follow quite well theoretical
ones.

As a simple example for actual
application, the author shows results
using some experimental data. Frequent-
ly, we can observe nonstationary res-
ponse behaviour for the structural
systems when they are subjected to
excess dynamic loadings. TFor instance,
piping response to excess dynamic
excitations shows so-called "softning
stiffness features" during excited
period before the inelastic deformation
and the crack initiation. Figure 9
shows a typical nonstationary trajec-
tory for simple beam type piping model
provided for the excited test under
quasi-resonance condition. As a result,
an initial state of f, =22.5 Hz and ¢ =
0.08 changes after about 40 minutes
into the state of fb = 20.5 Hz and ¢ =
0.10. Such an approach can develop to
more general situations many of which
frequently appeared in the seismic
excitation problem.
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Figure 9 Trajectory of Nomsta-
tionary Piping Response
under Random Excitation
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Figure 6 Trajectory of Nonsta-
tionary Moving Point
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Figure 7 Trajectory of Frequency
Variant Model
(f, = 10 Hz to 2 Hz)
DAMBING  RATIQ, o p. .
1 LTS T,
) \
\\\\ 1500
S ISy
\\ {
_Q-—--f\\— 2Hy
50 6.0 30 20
Re(st)

(3,-001—Q3)

Figure 8 Trajectory of Damping
Variant Model
(z = 0.01 to 0.3)



CONCLUSIONS AND ACKNOWLEDGEMENTS

The principal results obtained in this study can be summarized as
follows;

1) Applying the idea of a pattern recognition technique, nonstatiomary earth-
quake ground motion characteristics can be identified by using RPSD pat-
terns which are drawn on to the frequency and time plane.

2) The RPSD pattern for a specific earthquake motion is adequately classified
based upon the artificially "categorized" standard pattern model.

3) Nonstationary earthquake motions which should belong to any standard cate-
gory are arbitrarily generated with the aid of corresponding RPSD pattern.

4) Trajectory expressed in complex sT-plane is very convenient to show the
nonstationary response behaviours, particularly, those having narrow band
characteristics.

Finally the author would like to show his sincere thanks to Dr. N.Shimizu
at Chiyoda Chemical Engineering & Construction Co. Ltd. for his valuable
discussions and advices. He is also deeply grateful to Messrs. S.Aoki,
S.Tozawa, A.Nakashima and Y.Temmyo who have made co-operative works in his
laboratory.
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