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SUMMARY

Three models for combining earthquake records are presented. They are
based on a nonstationary spectral resolution of the three recorded components
at a site. The first model generates an acceleration record along directions
that optimize in time and frequency the spectral characteristies of the
recorded accelerograms. This nonstationary model represents the ground motion
by a single component that fully incorporates the characteristics of the three
original records. Accelerograms of the two remaining models are compatible
with directions that optimize the instantaneous and total energiles of the
recorded components. The proposed models are particularly suitable for multi-
component seismic design of structures.

INTRODUCTION

The earthquake ground motion at a particular location may have different
characteristics depending on the instrument's orientation. The orientation
usually is unrelated to any physical aspect of the earthquake mechanism and
has little meaning to the designer. Also, the seismic parameters of each of
the recorded components at a site are usually not identical; for example, peak
values, durations, energies, and spectral contents are usually different. In
addition, the three components always have some amount of cross—correlation.
In multi-component design of critical structures the effects of cross—
correlation may be significant and should not be disregarded a priori.

This paper proposes three different methods for solving for the influence
of instrument orientation on the earthquake motion. The methods are based on
a time~varying spectral resolution of the components.

BACKGROUND

Multi-dimensional ground motion has been the subject of many recent
publications. Hadjian (Ref. 1) defined a time domain axes rotation that makes
the correlation coefficient between two components of ground motion =zero.
Penzien and Watabe (Ref. 2) introduced the concept of principal axes of the
ground motion, which they defined as those axes along which the variances of
the three components of an earthquake have stationary values (or, equiva-
lently, the covariances are zero). Chrostowski and Lee (Ref. 3) argued that
such rotations of axes do not actually solve for the effect of component
cross~correlation on the response of a structure. From another approach,
Shoja—-Taheri and Bolt (Ref. 4) proposed a method for generating a strong
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motion accelerogram along a direction that maximizes the Fourier spectra of
two recorded horizontal components.

THE BASIC SOLUTION

Our basic solution for the modeling of three-dimeusional ground motion
derives from the equation for the mean response of a linear system to multiple
input exitations. For three ground motion inputs, that equation can be writ-
ten in the form:
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where Hx (w) is the frequency response function due to the ground motion input

xr(t); 8¢ x (w) with r # s is the cross-spectral density function between the
s

components xr(t) and xs(t); 8(w) is the phase angle; and w is the angular

frequency. The symbols |.| and * denote the modulus and complex conjugate,

respectively. Also, the summation convention for repeated indices applies.

It is clear from Eq. (1) that if [Sx - (w)] 1s zero everywhere, the cross-
s

integral on the right—-hand side of Eq. (1) drops out. Accordingly, an axes
rotation that makes the amplitude of the cross—-spectral densities zero every-
where guarantees that the correlation between the input components will have
no effects on the system response.

More importantly, the matrix § whose elements are the moduli of the
spectra and cross-spectra of the three ground motion inputs is singular and
has a rank of one. This important property of the matrix S can be proven by
showing that any row of $§ is actually a scalar multiple of any other row. It
follows that the same axes rotation that makes the cross—-spectra zero will
also make two principal spectra zero, thus resulting in a representation of
the ground motion with a unique spectrum (or corresponding time history).

This concept is the starting point of the proposed methodology. In addi-
tion, the nonstationarity of seismic records is recognized in this study;
therefore, the preceding solution 1is generalized by the introduction of a
time—-dependent power spectrum that displays the nonstationarity in the
spectral content of each of the recorded components and permits a combination
of these records in the time and frequency domains simultaneously.

NONSTATIONARY SPECTRAL RESOLUTION OF THREE-DIMENSIONAL EARTHQUAKE MOTION
Consider the earthquake motion at a point as a vector with three mutually
orthogonal components of acceleration xl(t), xz(t), and x4(t). A non-

stationary spectral description of these components is obtained through the
3x3 physical spectrum matrix P(f,t;w) whose generic elements are defined by
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Prs(f,t;w) = Fr(f,t;w)Fg(f,t;w) r,s = 1,2,3 (2)

where Fr(f,t;w) is the running Fourier transform of the earthquake component
xr(t); that is,

o .
Fr(f,t;W) = | xr(u)w(t—u)e-‘lzwfudu (3)

—co

in which t 1is time, f is frequency, and w(t-u) is a time-window function that

4o
satisfies the normalization condition [ ]W(t){zdt = 1.

-0

The concept of a physical spectrum is due to Mark (Ref. 5). The engi-

neering significance of the physical spectrum for nonstationary phenomena is
analogous to that of the power spectrum for stationary phenomena. Also, the
physical spectrum concept applies to a single event x{(t) as well as to the
ground motion process {x(t)}. In essence, the physical spectra (i.e., the
diagonal elements of P) represent a simultaneous decomposition in time and
frequency of the instantaneous energy of each component xr(c); the cross—
physical spectra (i.e., the off-diagonal elements of P) represent a decomposi-
tion in the f-t plane of the energy shared by the two components xr(t) and

xs(t). Consequently, when related to the Cartesian set ox1x2x3’ the instanta-
neous energy of the three—dimensional ground motion is described by the 3x3
matrix U(t) whose elements are defined by

oo
U () = f P_(f,t;w)df r,s = 1,2,3 (&)

—00

Also, the total energy is defined by the matrix V of elements

4o 4o +o
Vg = f_w f—m P (f,t;w)dfde = / U ()t r,s = 1,2,3 (3
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The matrices U(t) and V are real and symmetric. Also, the diagonal
elements of P are real, but the off-diagonal elements are complex. A real,
symmetric spectral matrix G(f,t;w) can be formed of elements as follows:

G (f,t5w) = IPrs(f,t;w)I r,s = 1,2,3 (6)

in which the symbol .] denotes the modulus. Thus, a complete nonstationary
spectral description of the three—-dimensional earthquake motion is given by
the elements of Eq. (6).

The spectral resolution is controlled by the shape and parameters of the
window function. For the treatment of earthquake records the choice of a
Gaussian window function seems logical because it offers a good combined
frequency-time selectivity and causes minimum leakage. It is also a self-
reciprocal, even, real function, which provides considerable computational
advantage. The following Gaussian time-window function was used in this work:
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The parameter T, representing the length, is defipned as T = f w(t)de/w(0),
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We see from Eq. (7) that T completely defines the window function. A value of
T = 2.725 secs was selected, because it insured good accuracy as well as
stability of the spectral resolution algorithm.

The concept of a physical spectrum has been applied in simulation and
wave studies of earthquake time histories (see, for example, Refs. 6 and 7).

MODELING OF THE RECORDED EARTHQUAKE COMPONENTS

With respect to the three orthogonal components of an earthquake, it can
be proven that the 3x3 matrices G(f,t;w), U(t) and V defined by Egs. (6), (4)
and (5), respectively, constitute second-order symmetric temsors. Hence, with
each of these matrices one can associate a set of principal axes along which
the matrices become diagonal. The values of the components along the diagonal
are the eigenvalues of the given matrix, and the direction cosines of the
principal axes are given by the eigenvectors associated with each eigenvalue.
The matrices whose rows are the eigenvectors of each principal direction are
the teunsor transformation matrices. Note that the principal axes associated
with G(f,t;w) are time and frequency dependent, the axes associated with U(t)
are time dependent, and the axes associated with V are fixed.

As in the case for the matrix S of the moduli of the power spectra, the
matrix G of the moduli of the physical spectra is singular with rank one.
Therefofé, it will have only one non—zero eigenvalue corresponding to the
unique principal spectrum. That eigenvalue 1is equal to the trace (or first
invariant) of the matrix G:

vaxv(f,t;w) = Gxx(f,t;w) + ny(f,t;w) + Gzz(f,t;w) (8)

where the indices x,y,z relate to the three recorded components of the earth-
quake and the primed indices relate to the principal directions. Knowing the
principal spectrum, we can devise an algorithm to reconstitute its correspond—
ing time history (see next section). The resulting accelerogram is referred
to as a physical spectrum optimized accelerogram (PSOA).

The time histories along the principal directions of the matrices U(t)
and V are generated by direct rotation of the recorded accelerograms using the
corresponding tensor rotation matrix for each case. These time histories are
referred to as instantaneous energy optimized accelerograms (IEOA) and total
energy optimized accelerograms (TEOA); their components are referred to as
MAX, INTER, and MIN according to the principal values to which they refer.
The IEQA and TEOA have, in general, three mutually orthogonal components that
are uncorrelated in the energy sense. However, it must be clear that the PSOA
represents the earthquake motion with a unique component.
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Algorithm for the PSOA

To generate the PSOA, we need a nonstationary representation of the
earthquake acceleration in terms of the principal spectrum. Such a represen-—
tation is available (Ref. 6). In fact, under the usual assumption of zero-
mean value for the ground motion process, the amplitude of the ground motion
acceleration is related to the modulus of the physical spectrum as follows:

ACE e = [28£6(F e )11/ 9

in which Af is the frequency sampling interval. The acceleration at time ty
is obtained by a summation over all frequency components:

N
x(ti) = z

. A(fk,ti)sin[ankti + G(fk,ti)] (10

1

in which N is the Nyquist sampling number. The phase angle e(fk,ti) is
computed by direct rotation of the phase angles of the recorded components
through the tensor transformation matrix of the physical spectrum matrix.
With that representation of the ground acceleration, the algorithm for the
PSOA proceeds as follows. Starting at time step one, we form the physical
spectrum matrix Cj(fk,ti;w) corresponding to the three recorded components.
Then we perform the eigenvalue resolution, form the transformation matrix, and
compute the value of the principal spectrum. Finally, we use Egs. (9) and
(10) to generate the value of the acceleration at that time. Then we proceed
to the next time step and repeat the procedure.

DISCUSSION OF RESULTS AND CONCLUSIONS

The following conclusions are based upon studies of the three components
of the 1966 Parkfield earthquake, station Chalome 8 (Ch., 8). Other earth-
quakes are currently being studied.

1. The time histories for the IEOA and TEQOA are similar in shape to the
recorded ones (Fig. 1). Also, plots of the SRSS combination of the response
spectra to each component of the two optimized models and the recorded earth-
quake show almost no difference between the three plots, as illustrated by
Fig. 3. This concurs with the argument advanced by many researchers that
strictly temporal combinations of earthquake records should not be expected to
reveal valuable information about the earthquake. However, the IEOA and TEOA
have the advantage that their characteristic functions are distinct. Also, in
view of the importance of energy as a measure of destructiveness of earth-
quakes, the IEOA and TEOA could be wvaluable in design.

2. As might be expected, it is the PSOA model that presents the most
interesting properties. The most relevant is that the PSOA eliminates the
need for a three-dimensional representation of earthquakes. The motion at the
site is represented by a single component that fully incorporates the char-
acteristics of the three recorded components. The study of some PSOA param-—
eters, such as response spectra, Fourier spectra, and cumulative RMS function,
supports the preceding qualitative result. First, it must be emphasized that
the spectrum of the optimized record (Fig. 2), at any single time and for
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every frequency component, is the sum of the spectra of each record (as
expressed by Eq. 8). However, the time history of the PSOA 1is not a simple
superposition of the recorded accelerograms. As expected, the PSOA shows much
higher acceleration peaks along the time axis (Fig. 1). However, the normal-~
ized peak acceleration (NPA), defined as the ratio of maximum acceleration to
the SRSS of the accelerations, is almost equal to the average of the NPA of
the recorded compounents., Of particular interest 1s a comparison between the
response spectrum of the unique component of the PSOA to the SRSS of the
responses of the three recorded accelerograms. The plots of these two func-
tions show good agreement (Fig. 4). This means that the use of the PS0A in
design may well replace the need for a multicomponent input, and yet it
results in an optimum (but not necessarily conservative) design.

Of course, additional earthquakes and many other aspects of the PSOA must
be studied before the preceding conclusions can be made general. Such work is
continuing. However, based upon the work to date, it appears likely that
there will be many applications for the PSOA in earthquake engineering.
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FIG.1. 1966 Parkfield Eq. (Ch.8): Time Histories and Characteristics of
Recorded and Optimized Accelerograms.
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the vertical component; these spectra have maxima of 2360 and 710 cm“/s”,res-
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