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SUMMARY

This paper is concerned with the computational procedure of displacements
of a semi-infinite elastic medium due to harmonic loads distributing vertical-
ly over horizontal rectangular and circular plames in the interior of the me-
dium. In calculating displacements, the authors propose the matrix-multipli-
cation method taking advantage of the vector-matrix form which expresses the
general solutions of displacements and stresses being used in the derivation
of dispersion function of a semi-infinite elastic multi-layered media. As nu-
merical examples, the displacements of the centre of the rectangular and cir-
cular planes are calculated changing the shape of distribution of the loads.

INTRODUCTION

Many works of wave propagation theory due to a harmonic load on the sur-—
face or in the interior of a semi-infinite elastic medium have been done in
the field concerning earthquake wave propagations (Ref. 1). However, so far
not many works have been done on the vibration problems of the interior of
three—-dimensional elastic medium with a free surface, because of the difficul-
ty of mathematical formulations. Pekeris (Ref. 2) obtained time responses of
surface displacements due to a buried pulse of Heaviside step function by
means of Cagniard method, and Awojobi et al. (Ref. 3) obtained the solutions
for the case of a vertical impulsive force of Delta function. In both works,
some efforts were donme in Laplace inverse method which transforms the displace-
ments expressed in the imaginary space of Laplace transformation with respect
to time into the real space. On the other hand, for a2 harmonic vibration of a
semi~infinite elastic medium due to a concentrated force, Matsuoka et al. (Ref.
4) used the superposition method of displacement potential functions and fun-
damental solutions in an infinite elastic medium by means of the principle of
mirror image. It is the same method as used for Mindlin's solutions. The au-
thors (Ref. 5) proposed a method for obtaining displacements by means of the
matrix-multiplication, taking advantage of the vector-matrix form which ex-
presses the general solutions of displacements and stresses being used in the
derivation of dispersion function of a semi-infinite elastic multi-layered me-
dia.

In this paper, the vertical displacements due to harmonic loads distribu-
ting over a rectangular and a circular planes in the interior of a semi-infi-
nite elastic medium are derived by means of authors' proposing method (Ref. 5).
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The method proposed herein can be extended to the interior vibration problems
either of an elastic stratum over a semi-infinite elastic rigid medium or of a
semi-infinite elastic multi-layered media.

FORMULATION PROCEDURE OF DISPLACEMENTS

As shown in Fig. 1, the authors
assume a semi-infinite elastic medium
to be a provisional two-layered media
with the same mechanical properties
for each layer, and consider that a
harmonic distributed load is applied
on the boundary plane between the
first layer and the second one.

In a Cartesian co-ordinates (x,
Y,2), eliminating time term e*¥%, a
displacement and stress vector of the

m-th layer (m=1,2) may be expressed Z2
as follows: Fig. | analycical model
aud co-ordinates
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Y1 and u; are shear moduli of the first layer and the m~th layer, respectively.
YPm §nd Vsm are the dilatational wave velocity and the distorsional wave veloc-—
ity in the m-th layer, respectively.  is circular frequency of wave motion,
and Ci—- Cs are unknown coefficients.

_ As a matter of convenience on mathematical formulation, Eq.(1) may be re-
written as the following equation in matrix form:

{vi = [pl {c} (2)
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where, {V}, and {C}, are a displacement-stress vector and an unknown coeffi-
cient vector of the m~th layer, respectively. Moreover, [Dly in the upperest
edge (2p=0) and [Dly in the lowest edge (zy=Hy) of the m-th layer, respective-
ly, are expressed as the following matrix forms:

[E], = [D]_ , [Fl_ = [D]_ (3)

3 Zm’—‘o 3 Zm=Hm

Next, derive the displacements for an analytical model shown in Fig. 1. The
following equations are obtained from Eqs.(2) and (3):

{c}; = [Elil{V}l,zl=0 (4)
Vi , -y = [F1;{Cl = [(F1,IE1TH VY . o (5)
{cl, = [E]EI{V}2322=0 (6)

The boundary conditions of the surface and the provisional boundary plane
are given as follows:

{O}l,zl=0 =0 (7)

T
Vv - = *
iy a,=0 = Wy, g = 10.0%) (8)
where, {0} and {oc*} are a stress vector and a known stress vector om the pro-—
visional boundary plane, respectively. Considering these boundary conditions,
the following equations may be obtained from Egs.(4) and (6):

[E173(6,01] | g (9)

fch

{c}2 (10)

(130,047 + (B [F] [RIT318,03] | g
where, {8} is a displacement vector. Dividing a coefficient vector {Cl, in
the Eq.(10) between {C*}y and {C”}7 for the ascending and descending wave com-
ponents, respectively. {C'}; may be zero because the ascending wave component
cannot exist in the second layer becoming a semi-infinite elastic medium.
Consequently, Eq.(10) may be rewritten as follows:

c Ky, Ki,]{6 L,; Li2] |0
= 7 (11)

0 K21 Kz2((0]1,2=0 Loy Loaz|{o*

. -1 -
where, Kij and Ljij (i,j=1,2) are sub-matrices of [K]=[E]2[F]1[E]% and [L}=[E]3,
respectively. From Eq.(11), an unknown displacemet vector on the surface may
be obtained as follows:
= - -1 *
{6}1,31=0 [Ko1] [Lozl{o*} (12)
By substituting {C}; and {C};, which are obtained by substituting Eq.(12) into
Eqs.(9) and (10), into Eq.(2), the displacements of the first and the second
layers can be obtaimed for vibratiom conditiomns, respectively.
Each known stress vector {ox} in Eq.(8) for " rigid ", " uniform " and
" parabolic " loads distributing over a rectangular and a circular planes, re-

1
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spectively, may be given as follows:

For a harmonic load distributing over a rectangular plane ( 2a x 2b ),

2 2
dz T(p+I1)T (g+1) )(1_ %7)p 1/2(1_ %T)Q 1/2

Sz T |7 Tab Tip+ti/2)T (g+1/2
|z]sa, |y |<b
0 |z]>a, |y|>b (13)
T = 0, Tyz =0 for all =z , y

where, @z is an amplitude of resultant force distributing over a rectangular
plane, ¢ and b are half widths of a rectangular plane for & and y directionms,
respectively, p and g are constants determining the shape of distribution of
the loads, and I'( ) is Gamma function.

By the application of Double Fourier Integral formula, the following equa-
tions can be obtained:

g* = - 4z f+mj+m~———giiz———— T'(p+1)T{q+1)J_(E,a)Jd_{E&2D)
2T )l (220) P (5,0 9 P q
-dg1dE, (1)
* =0, 1*_ =0
2x yz

where, Jp( ) and J5( ) are the p-th and g-th order Bessel s function of the
first kind, respectively. ‘
Performing the following variable transformation

£1=keosb , £,=ksind , dg,dE,=kdkdo

to the displacement solution (Eq.(2)) obtained from a known stress vector giv-
en by Eq.(14), decomposing the matrix-multiplication and shortening the range
of § integration, the vertical displacements due to harmonic loads distrib-
uting over a rectangular plane may be obtained as follows:

(1) The displacement due to a " rectangular rigid distributed " load
( as shown in Fig. 3 ) ( p=¢=0)

9z J“/ij KW (%)

2= " IR BF(R) cos (kxcosf)cos (kysinf)
s
- Jo (kacosB)J, (kbesinb) dkdo (15)
(2) The displacement due to a "' rectangular uniform distributed ' load
( p=g=1/2 )
4 T/20° w(k) cos (kxcosb)eos (kysind)
“z2 T T ZmPukiab JKBE(R) cosBsind
-sin{kacost)sin{kbsind) dkd8 (16)

(3) The displacement due to a " rectangular parabolic distributed ™ load
{ p=q=3/2)
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(17)
On the other hand, the displacements for " circular distributed " loads may be

obtained by deriving the equations corresponding to Eq.{1) in a cylindrical co-
ordinates(r,8,2) and by formulating the similar equation to the one prescribed.

A known stress vector {0*} in Eq.(8) for each " circular distributed "
load may be given as follows:

. r_ _9z r? p-I
cz-{ 7Pl =-327) |rlgr,
0 v |>z, (18)
T =0 for all »

ar
. . . ab .
where, ry 1s a radius of circular (=2¢'§—0 equivalent to a rectangular area,
- - » I - - - -
and p 1s a constant determining the shape of load distribution over a circular

plane.
By the application of Fourier—-Bessel Integral formula to above equatioms,
the following equations can be obtained:

o* = - 9z Jm 2P o1 p)
2 i

D Jp (kZ’u)kJo (kP) dk
(krg) (19)
T* =0

2y

Then, the vertical displacements due to harmonic loads distributing over a cir-
cular plane can be obtained as follows:

(4) The displacement due to a " circular rigid distributed " load ( p=1/2 )

Uy, = - 4W§ZZP0 f ngii sin(kry) o (kr) dk (20)
s
(5) The displacement due to a " circular uniform distributed " load ( p=1)
= 9z " W) .
Yz T T ZWukéPO j BF (k) J1(krg) Jo (kr)dk (21)
(6) The displacement due to a " circular parabolic distributed " load
(p=2)
_ 29z * W(k)
“z = T ﬂuk;rg J ZRF (k) Ja (kro) Jo (kr) dk (22)
0

where, the symbols used in Egs.(15)-(17) and Eqs.(20)~(22} are given by decom~
posing the matrix-multiplication as follows:

F (k) =(2k2—k;) 2-4%%aB
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W (k) =08{ (2k2~k2) exp (—oH) 2k *exp (-BH) H (2k*~k3) exp (~az) —2k?exp (-62) }
+k2{ (2k2-K) exp (-8H) ~208exp (~oH) H (2k?-kZ) exp (-Bz) —208exp (~az) }
+F (k) [oBeap{ o (2-H) }-kexp{+B (2~H) 1]

— 2_12 = 2_1,2 ey o
o=vk kp , B=/k K s kp——(u/Vs .k =w/vs

where, the positive and negative signs of the exponential term are for the
cases that the value z is smaller (higher than the loading plane), and larger
(lower than the loading plane) than the depth of the loading plane, respective-
ly.

Y Only the vertical displacements due to harmonic distributed loads apply-
ing vertically are shown in this paper. However, the displacements for loads
applying horizontally may be obtained by the same procedure as used in verti-
cal vibration problem (Ref. 5).

NUMERICAL RESULTS AND DISCUSSIONS

The numerical results of displacements described in previous section are
expressed in the real and imaginary parts of the following non-~dimensional co-
efficient term:

Qzezmt (23)
= - 222 + 1 3
Uz wa ( fa F2)
In order to compare the displacements due to " rectangular distributed " load
with the one due to " circular distributed " load, the authors introduce a cir-
cular radius equivalent to a rectangular area.

The calculation conditions are as follows:

loading plane : square ( a=b )
" loading depth " ratio H/a : 0, 2 and 5
Poisson's ratio V : 1/3

Figs. 2, 3 and 4 show the comparisons among the displacements at the cen-
tre of loading plane due to ' rigid ", " uniform " and " parabolic distributed "
loads changing the H/q ratio from 0 to 2.and to 5, respectively. It is seen
that, in the case of " uniform distributed " load, the real and imaginary parts
of the centre displacement due to a " square distributed " load show a similar
result close to those due to a " circular distributed " one being independent
of the ratio H/a. On the other hand, it is of interest to know that, in both
cases of " parabolic " and " rigid distributed " loads, the influences owing
to the difference between " square " and " circular " loading plames appear
in both real and iwmaginary parts of centre displacements. The centre displace-
ments due to " parabolic " loads distributing over " square " and " circular "
planes show inverse behaviours to the ones due to " rigid " loads. It may be
understood in both cases that the differences between the behaviours of centre
displacements due to " square " and " circular " loads become smaller with an
increase of the ratio H/a.

Fig. 5 shows the centre displacement due to a " circular uniform distrib-
uted " load by changing the H/a ratio. For reference, the centre displacement
due to a " circular uniform distributed " load in an infinite elastic medium
is also shown in this figure. In this figure, in the case of H/a=5, the centre
displacement due to a " circular " load in a semi—infinite elastic medium is
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almost similar to that in an infinite elastic medium in the range
sional frequency wa/Vs>1.5, that is, wH/Vs>7.5.
shear wave length L to the ratio H/a, this range may be L/H<0.84.
in the case of H/a=2, it is apparent that the centre displacement

Cencre displacements due to
discributed loads ( ®/a=5)
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solution of
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Fig. 5 Centre displacement due to

" circulsr uniform discribuced

load { H/¢=0, 2 and 5

of non—-dimen—
ratio of
Similarly,
due to a "

Judging from the

circular distributed " load in a semi-infinite elastic medium tends to similar
to the one in an infinite elastic medium with an increase of wa/Vs ( wH/Vs )

( with a decrease of L/H ).

Accordingly, it may be understood that the centre

displacement due to a distributed load in the interior of a semi-infinite elas-
tic medium coincides with the one due to a distributed load on an infinite
elastic medium, provided that the shear wave length is much smaller than the
loading depth ( in the case of the ratio L/H being small ).
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CONCLUSIONS

The calculation procedure of the displacements due to harmonic " rectan-
gular " and " circular " loads applying in the interior of a semi-infinite
elastic medium is reported in this paper, and as numerical examples, the
centre displacements of " square " and " circular " planes, due to harmonic
distributed loads were obtained for ' rigid ", " uniform " and " parabolic "
shapes of distribution of the loads. Although this paper does not show any
stresses due to distributed loads, they can be easily calculated from Eq.(2).
Moreover, as previously described, the method proposed in this paper has an
advantage to be extended to the vibration problem either of an elastic stra-
tum over a semi-infinite rigid medium or of a semi-infinite elstic multi-layer-
ed media, only by the matrix-multiplication.

It is noteworthy that the vibration problem in the interior of a semi-
infinite elastic medium may be one of fundamental researches in investigating
the dynamic-load-displacement behaviour of anchors embedded in the ground.
Because, as far as the authors know, few works kave been done so far on the
study of the dynamic-load-displacement behaviour of an anchor embedded in a
semi-infinite elastic medium.
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