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SUMMARY

This paper describes the development of an ultimate strength design
procedure for clay brick masonry shear wall buildings. This is presented as the
basis for an alternative to currently used working stress methods, The procedure
incorporates modern probabilistic methods and utilizes recent research data on
the shear and flexural modes of failure to develop the procedure for seismic
design.

INTRODUCTION

In the past decade masonry research activity has increased substantially.
This paper presents the development of an ultimate strength seismic design
procedure for clay brick masonry shear walls which incorporates recent advances
into the design process. Modern probabilistic methods and structural reliability
concepts have been utilized in order to account for the uncertainties in the
design and construction of a masonry shear wall and the available test results.

The current design procedures for masonry shear walls, included in codes
such ag the Uniform Building Code (UBC) are based upon working stress theory.
In these codes the design load is not intended to be representative of the maximum
earthquake loads that the walls may experience in their useful lifetime and the
allowable stresses are working stresses and not ultimate strengths. The advances
that have been made in the research area must be incorporated into the design
process. One way to achieve this goal is to develop a design procedure which
can provide acceptable safety today based upon our current state of knowledge
and which can be improved when uncertainties in both earthquake loading and shear
wall strength are reduced by future research. This paper presents the development
of an ultimate strength design procedure for clay brick masonry shear walls for
geismic loads which achieves this goal. The performance criterion considered
here is that the walls may crack but they still can carry their vertical loads
after the earthquake, thereby preventing collapse of the structure. This is done
for the shear and flexural modes of failure, The detailed discussion of all the
concepts and steps involved are given in Ref. 6 and partly in Ref. 7. The main
points of the procedure are briefly discussed here.
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ULTIMATE STRENGTH DESIGN PROCEDURE

In utilizing an ultimate design procedure for masonry shear walls the design
steps are essentially the same as the current procedures for working stresg
design. For example, for the shear mode of failure, a load factored design shear
force is determined and this is divided by the code specified ultimate design
shear strength to obtain the required area of shear walls. The difference ig
that the earthquake design load is multiplied by a load factor and the allowable
gtregsses are more representative of the wultimate strength of the walls,

In developing appropriate load factors and code specified ultimate
strengths, the objective is to ensurxe that the design of a building using the
procedure results in a seismically safe structure. In order to achieve this
objective the interrelationship of design load and design strength should account
foxr the uncertainties in both the maximum expected loads and the realistic
ultimate strength of the as-built walls.

A schematic flow chart of the methodology used here to develop the load
factors and design ultimate strengths is shown in Fig. 1 (the dashed line is
followed for the flexural failure mode). The methodology involves the following
steps: 1) Selection of the code design lateral force; 2) Selection of an
appropriate design ultimate strength of the wall; 3) Prediction of actual lateral
force; 4) Prediction of the actual ultimate strength of the wall; 5) Calculation
of a proper reliability measure; and 6) Comparison of the calculated reliability
measure versus society's acceptable measure of safety. This methodology is used
for both the shear and flexural mode of failures.

Step 5 involves the definition of a propexr reliability measure. Following
the modern probabilistic methods and structural reliability concepts, the safety
of the wall in each failure mode may be expressed in texms of a performance
function:

Z=R~-S (1)

where R is ultimate shear or flexural strength and S is the maximum expected
earthquake load. In general, random variables R and S are functions of other
basic random variables. Failure will occur when {Z<0)}; i.e., when the applied
load 1is greater than corresponding ultimate strength of the wall. The
reliability index of 2, denoted B, is defined as (Refs. 2, 3, 4, 5):

B =1z /07 (2)

where Z and Oy are the mean and standard deviation of random variable Z,
respectively. The probability of failure is closely related to this reliability
index (Ref., 3). Using mean-value first-order second-moment (MVFOSM) method of
reliability analysis (Ref. 5), closed form solutions may be obtained for load
factors with regard to S or strength coefficients with regard to R, for given
values of 8 and known means and standard deviations of S and R. A more refined
reliability measure is one based on Hasofer-Lind reliablity index (Ref. 4). The
recommended value for reliability index, B, ig 1.75 for seismic design (Ref.
3).
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SEISMIC DESIGR FOR SHEAR
The 1982 UBC gives the seismic design load, Vgqr as:
Vga = Co ZICSK Wy (3)

where Wy is the design specified weight on the wall. In this development Z =
1.0, I = 1.0, CS = 0.14, and K = 1.33 have been used. The load factor C, was
selected as 2.0 for this development. However, as discussed later, othe?c load
factors may be selected provided the ultimate strengths are scaled accordingly.
The design ultimate shear strength, fug, may be written as (Refs. 6,7):

fud = €3 Vf'ma (4)

where f'pg is the design specified prism compressive strength and Cg is the
strength coefficient which is a function of wall reinforcement, amount of
grouting, and height-to-width ratio of the wall. Cq is the coefficient to be
determined.

It can be easily shown (Refs. 6,7) that the actual ultimate shear capacity
of a constructed masonry shear wall, Vuar designed using Egs. 3 and 4 is:

Vya = (0.372 / Cq) XpaXuXurCr VXF Wg (5)

where random variables Xp, Xy, Wyg, and Xg represent uncertainties due to the
actual size of the wall, workmanship, equation form, and the actual prism strength
versus its design specified value; i.e., f'pg, respectively. Cp is a random
variable whose variation is obtained from the test results.

Using the Riddell and Newmark model (Ref. 9), the maximum earthquake shear
force, Vg, can be written as:

Vsa = XusXy¥RgXpXpWg (6)

where Xyg, Xy, and Xp represent uncertainties in the equation form, nonlinear
force—deflection relationship and actual dead load, respectively. Ag is the
expected peak ground acceleration at the site and ¥ is the damping and ductility
factor. The mean and coefficient of variation (COV) of ¥ for several combinations
of damping ratios, ductility factors, and force-deflection relationships are
available (Ref. 9). X} is a random variable used to account for predominantly
first mode response of a shear wall building (Ref. 10).

pDividing Eqs. 5 and 6 by Wy and substituting the results for R and s,
respectively, in Eq. 1, the performance function becomes:

Z = (0.372 / Cgq) XaXyXMrCr VXf - XusXy¥Ag¥pXp (7

Results utilizing this formulation are discussed in a later section.

SEISMIC DESIGN FOR FLEXURE

Using the 1982 UBC for the flexural design of masonry walls requires
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designing the walls for the base moment, Mgy, due to the total seismic lateral
load given in Eq. 3. The procedure for flexural design is different than shear.
For shear design a load factor was selected and a corresponding shear strength
determined. For flexural design the strength of wall is determined by the wall
properties and the load factor (C,) 1is determined by the probabilistic
proedure., According to 1982 UBC:

Mgg = Vgq F(h'jg, W'jig) (8)

where hj and wj are height and weight of i-th story. The function F(‘)
usually has a simple form which is obtained based upon elastic analysis. Using
the same values for Z, I, CS and K as before, then Eq. 8 becomes:

Mgq = 0.186 C4 Wy F(h'jg, W'ig) (9)

For a lower bound (or optimum) design the wall will be designed to have
a design ultimate flexural strength, M,g, equal to design seismic base moment,
Mggq, using the principles of reinforced concrete section analyses adapted for
low strength materials (Refsg. 1,6). Then the design ultimate flexural capacity
of the wall will be:

Myg = Mgg = 0.186 C, Wy F(h'jg, W'ig) (10)

However, the actual ultimate flexural strength of the wall, M, will
be greater than the design value but is related to its design value, M43, is
as follows:

Mya = XpXuXpXyni1XaMug (11)

where Xy is a random variable to account for the test vexrsus design
overstrength with a mean COV obtained from tests (Ref. 8) with controlled
workmanship and known axial load. The random variables Xy, Xp, Xy1, Xz
represent uncertainties in workmanship, actual dead load, axial force, and size
of the wall, respectively. Egs. 11 and 10 together give the actual ultimate
flexural strength of the constructed wall.

The actual maximum expected earthquake base moment, Mg,, can be
written easily using Eq. 6 as follows:

Mga = XpXysXy¥ AgXpXpWaF(h'ig, W'ig) (12)

where Xp ig a random variable accounting for error in using the function
F(') to predict the actual maximum earthquake base moment.

Dividing Egs. 11 and 12 by Wy F(h'jg, W'jg) and substituting the results
for R and S, respectively, in Eq. 1, the performance function becomes:

Z = 0.186 CoXpXyXpXyiXa ~ XpXus¥pXpXy¥ Ag (13)

Results utilizing this formulation are discussed in the following section.
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DISCUSSION OF RESULTS

The strength coefficient (Cq) for the shear mode of failure is obtained
from Eqs. 2 and 7 using the Hasofer-Lind method of analysis. The recommended
value of B = 1.75 (Ref. 3) was used for the analysis and the EERC test results
(Ref. 19) wer-e used for determining the mean values of the strength coefficient
Cp as given in Table 1. The best available estimates on the mean and COV's of
the other variables are given in Table 2. The variable not given in Table 2 is
the mean and COV of ¥ since this is different for the shear and flexural modes
of failure. These variables were obtained from Ref. 9 and for shear they were
based upon an elasto-plastic force-—deflection relationship' with a damping ratio
of 10515 and a ductility factor of 2 with ¥ = 1.09 and a COV of 0.15. These values
are similar to those that would be obtained using a damping ratio of 5% and a
ductility factor of 2.75. The force-deflection relationship of masonry shear
walls lies within this range.

Because of the large number of variables that contribute to the value of
Cgq, 1t is necessary to evaluate how Cq varies as a function of each of thesge
variables separately. This has been presented in graphic form in Ref. 6. A brief
discussion of the more important variables follows: The impact of changes in
B on C3 is non-linear. A 10% change in B results in an 8% change in Cq. For
changes in the mean of the test results, Cp, the impact is linear. A 10%
change in Cp will change C3 by 10%. Thus, as more test results become
available, a lower COV can be placed on Cp since a more reliable value will be
available. The effect of workmanship, XW' also has a linear impact on C3.
For inspected masonry a uniform PDF with lower and upper bounds of 0.9 and 1.0
was assumed. This corresponds to accounting for the possibility of up to 10%
decrease in the strength of the wall due to workmanship. The uncertainty in
f'n is represented by X¢ with a mean of 1.25 and a COV of 0.20. The impact of
Xg on Cq is less pronounced than other variables due to Xg being in square
root form in the performance function. Cq has a highly non-linear variation
with the mean of Ag However, care must be exercised since as Ag decreases
for lower seismic areas, the zone factor, Z, of the UBC also decreases. Por the
analysis, a Z—-factor of 1 and an Ag of 0.24g was selected to be representative
of the Los Angeles area.

For the variables given in Table 2, the corresponding values of Cg3 are
given in Table 3. The benefit of the procedure is that the impact of changes
in any of the variables can easily be evaluated. One of the major decision areas
in the utilization of the ultimate strength design procedure is the load factor,
Co. B value of C, of 2.0 was used herein, however, the ANSI A58.1 1982 load
provisions recommend a value of 1.5. If this were adopted, the appropriate values
of Cq would be 0.75 times the values given in Table 3. If a & factor were
incorporated in the procedure, the values given in Table 3 would be increased
by 1/® since Cg has been calculated such that all the uncertainties have been

accounted for.

The load factor, C,, for the flexural mode of failure is obtained from
Egs. 2 and 13 using the Hasofer-Lind method of analysis. As wii':h shear, a B
value of 1.75 was uged and values of other variables are given in Table 2. A
value of Xy = 1.0 with a COV of O was used, implying that a cantilever wall
was assumed (Ref. 8). A value of ¥ equal to 0.78 with a COv of _O-_17 was.used
and these values correspond to a damping ratio of 10% and a ductility ratio of

841



4. The higher ductility ratio compared to shear reflects the superior inelastic
performance of the wall responding in the flexural mode of response. as with
shear, the impact of variations in all the variables was evaluated and Presented
in graphic form in Ref. 6. For the values given in Table 2, a load factor,
Co, of 1.45 was obtained. Thus, if a load factor of 1.5 as recommended by ANST
A58.1, 1982, is used, walls designed for flexure will perform adequately provided
a shear failure is prevented.

From the results presented for the shear and flexural modes of failure,
a consistent ultimate strength design procedure can be developed utilizing the
ANST A58.1, 1982 recommended load factor of 1.5 with the 1982 UBC seismic loads
and the strength coefficients, Cg, given in Table 3 multiplied by 0.7s.
appropriate ® factor.

CONCLUSIONS

A formulation to provide a basis for the ultimate strength design procedure
for clay brick masonry shear wall buildings has been presented. This procedure
has been developed using probabilistic concepts for seismic loads considering
both the shear and flexural modes of failure. The benefit of the method developed
is that changes in any of the variables incorporated in the formulation can easily
be evaluated: This will permit a continuing evaluation of the procedure ag
uncertainties in the major variables are reduced with updated research data.
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