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SUMMARY

The design procedure here explained has been extensively applied to resto-
re and to strengthen masonry buildings in Southern Italy areas after the sei-
smic event of november 1980.

The basic concept is to premise a F.E.M. analysis of the walls composing
the multi-cellular structure of the building. Each wall is considered as a
plane plate with one or more rectangular openings under the action of shearing
forces. The analysis is performed in the inelastic range,with incremental pro-
cedure,using imposed dislocations to account for inelastic strains. In fact
the F.E.M. inelastic stress analysis has proved itself as an efficient and in
some cases an indispensable tool to define the extent and the localization of
strengthening operations,on condition that the fracturing is comsidered.

SOME THEORETICAL REMARKS

The analysis of post—elastic behaviour in plane-stress state of structures
whose constitutive material is characterized by different values of yield
stress in tension and in compression as is the case of materials having stone-
type nature is performed in the context of the limiting envelope proposed by
Drucker and Prager (Ref.l). The well-known analytical expression of this sur-
face in the principal stress space is:

F=oaT +/[T, -K=0 (1

with : Tl = 01 + 02 + 03 (2)
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and ¢ ,K are material comstants to be determined from experimental data. For
soils these constants depend on friction angle and cohesion. For masonry, in-
stead,the usual experimental tests lead to evaluate the uniaxial yield stres-

ses 0 ., 9.0 in tension and in compression respectively. We have therefore ex-~
presse% the“above parameters o ,K in terms of Gol’ 002 obtaining (Ref.2):
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Cutting ney the surface ropresented by (1) with one of the planes of cque-
tion ¢ .=¢, (i=1,7,3), we obtai: the limiting conical curve in plane stress
state. This curve is always hyperbole for values of the parameter (% ]/C .
(Ref.3). This result don't agree with the experimental data obtained for n@fc—
rials like those mentioned above (Ref.4). We proposed as yielding surface that

"one defined by the D.-P. cone for values of T >0 and by the von-Mises cy-
linder in the other cases.The intersecting curve be%ween these two surfaces ig
a circumference with radius R=|g ,|7\/2/3 laying in the octaedral plane. The
resulting surface,defined by only two parameters,fits with sufficient approxi-
mation the experimental results obtained,for ex.,by Kupfer et al.(Ref.4) te-
sting on concrete flat plates in biaxial state of stress. This surface we have
used now to design the numerical procedure explained in the following (Ref.3).

The material behaviour in post-elastic range has been supposed to obey to
the plastic flow-rule,assuming the yield surface as plastic potential.

The essential features of the numerical incremental procedure are strictly
based on the concept of considering inelastic strains as "dislocations" enfor-
ced on the elemental sub-region deriving from the discretization of the actual
bi-dimensional continuum medium whose constitutive low is assumed to be linear
ly elastic. Under this hypotesis and with the assumption of stress—constant
finite element,it is possible to account for the softening occurring when the
stress point P overcrosses the yielding curve in tension-tension or in tension
compression quadrant of the U plane (Fig.I). The central point of the
procedure is the evaluation o% dlslocatlon to enforce elastically on an ele-
ment for which the plastic compatibility condition is violated because of an
increment AR of applied external loads R. For the sake of simplicity and
without loss of generality we shall refer to an element for which the previou-
sly achieved equilibrium configuration under loads R may be represented by
stress point P inside the yield curve; let its new stress state corresponding
to the increment AR be represented by point P'(0 ) outside the yield curve.

The value of dislocations to enfor
ce on such an element is determined
according to the following steps (Co-
lonnetti's method):

i) The neutral position of point P
laying on the yield curve is defined
directly solving the system formed
by the equation of the curve itself
and the equation of the straight-1i
ne P -P'. The length of the segment
PP’ 0measures the excess of stress
80 wviolating the plastic compatibi-
lity conditiom. AW F(g)=0 EEZﬂ
ii) The gradlent of the function F(G )
is evaluated at P' its components

a,=o9 F/B > 28, 3 F/ 30 , are proportionmal to the plastic strain increments
5%1 ,682 thr0ugh a p031%1ve scalar parameter )\ ,according to the relation:

K

—J—O‘l O,

|

fe=X2a ©)
. T
where is a = fa, a
iii) The value of diSlocation 65 to enforce on the element is defined by the

condition that the associated

6'0= K 6c = MKa ®
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(vhere K is the material elastic stiffness matrix),is such that the plastic
compatibility is satisfied

F(g+Xa)=0 (7
Obviously,greater is the loading step,so the error.

When during the 1oadlng step the stress-point P' overcrosses the yield cur
ve in tension-tension or in tension-compression quadrant,the yield curve (7)
corresponding to the D.P.cone,degenerates to the J-0 axes' (0. =0),s0 accoun
ting for the fracturing behaviour. 12 01 -

A detailed description of the different ways by which it is possible to
return on the new yield curve can be found in (Ref.5). We assumed only the
tensile ultimate stress of the material diminishes to O,while the other is
not affected by fracture and therefore remairsconstant. This is equivalent to
suppose the plastic flow-rule to be still valid for the new yield curve.

The whole procedure can be summarized as follows: the equilibrium and pla-
stic compatibility of the structural system under the action of a set of loa-
ding forces R ( loading step ) is obtained by means of a sequel of phases ea-
ch of one characterized by modification applied to the non-compatible current
stress state. A set of dislocation defined according to (i),(ii),(iii),is en-
forced on a fixed nodes element in order to satisfy the plastic compatibility
condition. The set of elemental stresses corresponding to the dislocation,tran
sformed into nodal elemental forces § R is subtracted to the external nodal -
applied loads A R and under this new loading set,it is achieved again an equi-
1ibrium configuration,for which the plastic compatibility must be satisfied.
The iterative process stops when the norm of the elemental nodal forces corre
sponding to the dislocations becomes vanishingly small. -

Starting from the consideration previously discussed,we used a standard ge
reral purpose F.E.system running on a HP 9845B,16-bit desk-top computer.The
modular characteristics of the numerical code,called NINFEA,allow the implemen
tation of the plastic rutines in the body of the program itself without any -
relevant changement of its logical structure. In fact the procedure explained,
using the same stiffness matrix of the assembled structural model for the who
le loadinghistory,makes possible to solve the successive linearly elastic pro
blems by an easy backward and forward substitution of the loading column-matri
ces on the Cholesky's factorized form of initial stiffness matrix. -

The Table I contains a brief listing of the rélevant statements of the BA-
SIC routine concerning the determination of the value of dislocation to apply
on a plastic element. In the listing some REM explain what is necessary.

THE NUMERICAL CHECK OF STRENGTHENING OPERATION

The first set of applications is concerned with the two-story wall represen
ted in Fig.2,where there are also indicated the values of all the mechanical
and geometrical parameters. This case can well simulate the wall of a two sto-
teys masonry building,under a vertical constant loading set,and horizontal for
ces uniformly distributed acting at level of floors,whose value is increased
monotonically by the B factor. The result of the stress—analisys for B=1.75 ,
is in Fig.3,where it is possible to evaluete the contribution to the strength
due to the presence of crosswalls well-comnected. Fig.4 shows the results of
the strengthening of the spandrel,obtined increasing the Young modolus E,and
ultimate tensile stress col,by a factor 3. It is possible to do a comparison
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TABLE 1

REM S0} = Yield streéss in tension

RER  S0Z = - " * coupression

KER €1 = Francipal stiress

KER £ = " i

FEF Fris Siress-point outsidé the yield curve C(currert steép)
RER F " - inside - - - (previous step)
Kim Heutral stress-point Ccurrent step)
FEN b= Materiral stiffness nmatrix

FEM fi = Direction cosines of Grad F at F

KER Hornsig = Direction cosines of acsoc)rarted stress

REnM To satisfy (7) we 1ntersect yield surface with the straight line

having NHormsi1Q as direction cosines and passing through F°
DIM K(2,27,Normsig(2,1),R(2,1)
T1=£814€2 [ ')
T20=(51~2+482-2-51482>/3 L <P}
Alpha=(SB1+SB2Z)/(SOR(3)+(SB2-$01) 14
1

Key=2+SP1¥S0B2/(SER(3ID#(SB2-581)) (4>

REM Expression of yield surface

Mises: DEF FNMises(T2d,S82)=3+T2d-S6z"2

Irucker:DEF FNDrucker(T1,72d,flpha,Key)=fAlpharTI+SQR(TZdI-Key | (1>
Di=SQR((X2~S1)~2+(Y2-S2)~2)
L1=(X2-51)/Di

Mi=(Y2-S2)>-Di
REM The follouing label is used twice:the first time tc determine
REM the intersection between the yield surface &nd the straight line
RENM Fo-FP’. The seconcd time 1o determiné the return stréss point F’°
Intersez: IF T1<=S82 THEN Druckerb

Aa=xlL1~2+M1~2-L1«n]

Bb=2#S1+L142#S24M1-S1%M1~S2+#L1

Cc=51~2+82~2-S1#S52

GOTO Coord
Bruckerb: Beta=1/3-Rlpha*~2

Ganma=1/3+2#R1pha~2

RasBeta~Camma¥(L1+M1)

Bb=2#Bet a¥(S12L1+4S2%M1)~Camma*(S1¥M1+S2+L1)+2+Key*Alphas (LI+M]1)

Cc=Beta*(S172+52-2)-Camma*(S1¥S2)+2+¥Key*Rlpha*(S1+S2)-Key~2
REN X81,X82 = Distances of moving neutral stréss—point P from P’
Coord:Disc=SQR(Bb~2-4#Ra*lc)

Xe1=(-Bb+Disc)/ (2#Aad

X@2=(-Bb~Discis(2«Ra>

IF ABS(X1)>ABS(XB2) THEN Puntoq
Puntop:! X=Si+L1#X01

Y=S24M1¥X01

GOTO Subend
Puntoq: X=S1+L1+XB2

Y=S2+M1#X02
Subend:IF Flagli=l THEN RETURN

Tii=X+Y

T22d=(X*2+Y~2-X#Y)>/3

IF T1<S02 THEN Normmises
Normdrucker: A(1,1)=sARlpha+]1/2/SQR(T22d)*(X~T11/3)

R(2,1)=A1pha+1/2/S0R(T2R2d)>*(Y-T11/3)>

GOTO Num
Normmises: R(1,1)=2%X-Y

A2, 1)=2#Y-X
Num: Mod=SQR(A(1,1)~24R(2,15~2)

FOR I=1 YO 2

ACI,1>=A(],1)>/Mod

NEXT 1

MAT Normsig=K#R

Mod=SAR(Normsig(l,13~2+Normsig(2,1542>

MAT Normsig=(-1)#Normsig

Li=Normsig(l,1)/Mod

Mi=Norasig<2, 1)/Mod

Flagi=}

GOSUB Intersez

SUBEND
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between the strengthening of the whole spandrel or of its only part above the
opening. Finally,in the Fig.5,the plot of horizontal displacement of the cor-
ner of wall versus B makes possible to quantify the different response of the
wall assuming perfecty-plastic or fracturirg behaviour of masonry.

The second set of applications analyscs the wall considered as reference
example in the Italian Standard Code (Ref.6). In Fig.6 it is possible to read
all the mechanical and geometrical parameters,and to see the mesh of the dis-
cretization of wall. The horizontal ultimate force according to the mentioned
code and computed assuming a constant value of ultimate shear strength has va
lue H=32330 Kg. The vertica] constant loading set distributed at the top of
the wall values *2.7? Kg/em™. For this wall we have studied the effect of the
following strengthening techniques
(a)= Reinforced Concrete beam collar
(b)= Openings boxing in r.c. alround,or with steel frame.

(¢)= Binding of the wall along the edges to the crosswalls
(d)= Vertical reinforcement of wall by steel bars.

The results are shown in Figg.6,7,and 9. From Fig.9 we observe that it is
possible to attain the ultimate shearing force H only in the presence of both
the r.c.collar beam and the bound crosswalls. In the presence of frames boxing
the openings the structural element response tends to that of the solid shear
wall,i.e.without openings. If we set for the beams of the frames

EJ=GtpA/48

with t,thickness of wall;A,area of opening; p,perimeter; G,shear modulus of
masonry; E,Young modulus of frame, the wall's,behaviour is that of the solid
wall. In the case studied we uﬁed J1=68566 cm for the door,and J2=31510 for
the window,with E=300000 Kg/cm™.

Finally in Fig.6 and 7 the spread of plastic zones are indicated for diffe
rent values of B N
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cal bars at the edges.
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= 10.37 cm2.

In Fig.8 it is shown the deformed shape of the wall under the horizontal
force H. It is worth noting that the stiffness of the adopted boxing frames
has been determined by equating the diagonal's elongations of the masonry pa-
nels virtually occluding the openings,to that of the frames. The firsts are
computed assuming a pure shearing stress state of masonry,the seconds negle-
cting the axial flexibility of the beams.

We furthermore suggest that the curves I,II,and IV of Fig.9 can also repre
sent the behaviour of the wall without bound crosswalls,but with steel verti=
The area of each bar is,obviously,
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