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SUMMARY

This paper presents a simplified method for formulating the limit state
equation for the failure of tall columns subjected to seismic ground motion.
Probabilities of failure conditional on input ground motion are obtained for a
hypothetical distillation column found at oil refineries based on the first
order reliability method. The two predominant failure modes of such columns
are first yield in the anchor bolts at the base of the column and buckling of
the supporting skirt. The limit state equation based on the simplified
approach is compared to a limit state equation obtained from random vibrations
theory for the input motion and the response of the column. The latter limit
state equation 1s not explicit and first order reliability methods become very
difficult to implement. The simplified approach has the potential of being
very practical and easily implementable especially in a large scale study.

INTRODUCTION

The need for assessing the risk from failure of major industrial
facilities has been long recognized, however attention has been focused on
these facilities only recently. The failure of such facilities can result in
major economic loss or in direct damage to the environment or a community.
Evaluation of the risk from an industrial facility involves a systems
representation and analysis of that facility. A fundamental problem which
arises in the systems analysls 1s the evaluation of the component failure
probabilities. Many of the key components at such facilities are structures
(e.g. distillation columns, pipe supports, furnaces, etc) and require separate
reliability estimations.

In this paper existing methods for reliability analysis of strucutres are
reviewed and a simplified approach is presented. The proposed method is based
on the first order reliability FOR method (Refs. 1-3). A key to this method
is the construction of the limit state equation for every failure mode. The
proposed procedure considers simplifications for the formulation of the limit
state equation for structures subjected to seismic ground motion. For
illustrative purposes, the reliability of a tall distillation column found at
0il refineries (see Figure 1) is evaluated for the two most important limit
states of the structure.
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METHODS FOR COMPONENT RELIABILITY ANALYSTIS

In general, structural failures occur when the ‘load on a structure is
greater than the structure's resistance. The interaction between the load and
the resistance is defined in terms of the margin of safety, M = R - S, where R
is the resistance and S is the load. The load and the resist:ance are
functions of many random variables. The margin of safety 1s generalized to a
funetion g(X), where X = [Xl’ xz,...xn] is the vector of basic random
variables. The region defined as wg = {X: g(X) > 0} is the safe domain,'mf =
{X: g(X) < 0} is the failure domain and 3w = { X: g(X) = O} is the failure
surface. The probability of failure is found as follows

P, = [ i (D) & (1)
Xew
where fy (X) is the joint probability ‘density of the basic random variables.
In most practical cases, however, the integrations involved are unwieldy even
with numerical techniques. For this reason, some approximate methods have

evolved for estimating the total probability of failure.

The most widely used approximate technique is the first order second
moment method (Ref. 4,5). In this approach the resistance and load are
assumed independent and normally distributed and the failure probability is
approximated by

P_=1~8(B) = &(-B) (2)
where &(+) is the cumulative hormal distribution and B is the safety index
defined by 3

B = (up - uS)/VGRZ + 052 (3)
In equation 3, up and pg are the mean values, and ch and cssz are the

variances of the resistance and the load respectively. The means and
variances are approximated by the first order term of the Taylor series
expansion of safety margin evaluated at the mean values of all random
variables. It should be noted that the safety index, B, as defined by
equation 3, will vary depending on the form of the failure function. The
accuracy of the probability approximation depends on the degree of non-~
linearity of the failure surface, the deviation of the distributions for R and
S from a normal distribution, and the deviation of the safety index defined by
equation 3 from the "minimal" safety index as 1Is defined later in this
section.

A better approximation of the failure probability defined by equation 2
is obtained by the first order reliability approach. As described earlier,
the limit state function g(X) is expressed in terms of the basic random
variables X which are not necessarily normally distributed. These variables
describing the failure surface are transformed to standard normal variables.
The transformation will be exact at all points for a normally distributed
basic random variable. For a non-normal basic variable, the probability
density and distribution of the transformed variable will equal the density
and distribution of the original variable only at the transformation point.
This transformation explicitly accounts for dependent random variables.

An invariant measure of the safety index, is provided by the shortest
?liis}-::ani? from the origin to the transformed failure surface denoted by By,

er. H n
B = mn (] u2)Hl/? 4)

HL Uedw i=1
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shere duw is the failure surface in the transformed space. The point on the
failure surface closest to the origin is known as the design point or the most
1ikely failure point. By, and the design point are usually calculated
iteratively. The failure surface is approximated by a first-order Taylor
series evaluated at the design point. Then the integral of equation 1 is
given by equation 2 where B is replaced by By . Ditlevsen (Ref. 2) has shown
that this approximation is almost always close to the correct value of the
failure probability. A number of different solutions are possible, as this is
a classical problem in non-linear equations. An iterative procedure with
rapid convergence (Ref. 3) is adopted in this study.

FORMULATION OF LIMIT STATE

A key to the implementation of the first order reliability approach is
the formulation of the 1limit state function, g(X). For purposes of
reliability of structures subjected to seismic ground motion the following
simplified form for the limit state function is suggested:

g(X) = R = A*Gy(X])*Gy(Xy) (5)

where R is a resistance parameter and A is a ground motion parameter such as
peak ground acceleration, velocity or displacement although not restricted to
these. Gy(X;) is a transfer function from ground motion parameter to input
load on the structure (e.g. base shear) and reflects variations due to local
soil conditions and soil-structure interaction. GZ(XZ) is a transfer function
from structure input load to failure wode measure parameter such as stress at
potential failure point or displacement at a critical point on the
structure. The vector of random variables X is divided conveniently into two
vectors.

Such generalized formulations are developed below for a tall column found
at oil refineries. Such columns are designed so that the anchor bolts at the
base of the column would yield before any other failure can occur. Thus, the
limit state equation for failure by yielding in the anchor bolts can be simply
stated

g(X) = 0y = 0y nax (6)
where 0, is the yield stress of the bolts and o .. is the maximum stress on
the bolts due to vibrations of the column from earthquake ground
accelerations. The objective is to describe the maximum stress in the bolt as
a function of the input ground motion. Two approaches are considered for that
purpose - a random vibrations analysis and equivalent static analysis.
Numerical results from the equivalent static analysis will be presented.

Random Vibrations Approach

The theory of random vibrations is employed to develop the limit state
equation for the predominant fallure mode of a tall column. Let earthquake
ground acceleration be a stationary wide-band Gaussian process, X(t), with a
power spectral density Si(w). This assumption is often made when considering
only the high amplitude portion of a signal (Ref. 6) and when the structure
has very low damping in the elastic range (Ref. 7). Tall colummns, such as the
ones considered in this paper, have been shown to have very low damping (Ref.
8). Linear time—invariant behavior conditions for the column are also met for
the specific limit state of first yield in the bolts.

In order to evaluate the maximum stress in the anchor bolts of the
column, it is first necessary to determine the distribution of the peak
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acceleration amplitudes at the top of the column (see Figure 1l). Assume the
input power spectrum to be essentially constant, S, , across the width of the
column transfer function. The column is modeled as a cantilever with a
constant mass and cross section along its height. The fundamental period is
assumed to dominate. With these assumptions, the displacement at the top of
the column will be a narrow band process with a power spectrum given by (Ref.
9)

7K 2 Aw D
e, ° —-——-—{m‘ + — 7
S (w) = ( AwpkL) So for p 2 l l P 2 7
y 0 otherwise
where K is a normalizing constant, Aw = w&p is the width of the transfer

function, & is the damping ratio, p is the fundamental period of the column, L
is the height of the column, and k = 1.875/L is a shape constant (see Ref.
11). TFor this response process the distribution of the peak acceleratioms, a,
is Rayleigh (Refs. 9,11) a 2 2
fA(a) =—5— exp [-a /Zdy ] (8)
cl

where G.F is the variance of the %esponse acceleration. The moment at the
base of the column is found to be a function of the peak accelerations, a, the
mode shape, and the mass distribution along the height of the column. The
moment is given by 9
age = (aWLB)/(g(k1)?) (9)

where W is the weight of the coiumn, g is the acceleration of gravity and B =
1.566 is a normalizing coustant related to the mode shape (Ref. 12). The
maximum stress in the bolts at the base of the column, ¢ ,max’ is expressed as
an implicit function of the weight of the column and the moment at the base
using equilibrium conditions (see Figure 2):

- p! -
W= Bl [Al R A2] A3 (10)
- 2, _ 1
Mo = By [ROA, ~R'A|1/2 + A, (11)
= /ST =% : R' = S
where A1 X (2Rs x') ; R RS be
= “Loge . = '
A2 cos (R /RS), B1 2 RstEcscm /x
= ) B \
Ay =Ece_ Al ) '(R x)/x"]
and xi<R 2
= v .
A, =Ee AL7] R -x)x'];

xi<R'

where E; and E. are Young's moduli for steel and concrete respectively, AB is
the cross sectional area of a bolt, R,, t and x' are as shown on Figure 2.
Equations 9, 10 and 1l have to be solved iteratively in order to find €om and
the neutral axis x'. The maximum bolt stress is then given by:
- 1
Gb,max‘_ Esecm (Rs + Rb)/x (12)

where Ry is the bolt radius. Equations 9 through 12 are needed to describe
the limit state equation 6. 1In order to apply the FOR method beyond this
point, it is necessary to evaluate the function g(X) numerically. This
formulation of the limit state equation proves to be rather lengthy and
difficult to apply, paticularly when repeated applications of the model are
necessary. In the following section we present a simpler method for
formulating = the 1limit state function which lends itself to easy
implementation. ‘
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Equivalent Static Method

In order to simplify the formulation of the limit state equation the
following assumptions are made. The ground motion parameter is a peak ground
acceleration (PGA) value. The transfer function is the dynamic amplification
factor taken from a response spectrum. An exact mode shape is replaced by an
assumed shape when calculating the moment at the base and the iterative
solution for equilibrium at the base 1is replaced by the assumed stress
distribution used in the design equation. These simplifications provide a
closed-form expression for the 1limit state equation. The procedure is
illustrated in the following examples. The two limit states considered are
first yield in the bolts and buckling of the supporting skirt.

For the analysis of first yield in the Bolts, it is assumed that the
ground motionm is sufficiently well characterized by peak ground acceleration
(PGA). The shear at the base of the column is computed following ATC-3 design

recommendations:
vV = A-Gl(x) = PGA-BDQW = C *PGA (13)

where B = 0.7 is the ductility factor; D = 2/0.3/T is the mean dynamic
amplification factor with T = natural period of the structure; Q is quality
factor taken as unity to remain mean centered; and W is the weight of the
column. The shear is assumed to have a triangular distribution with height
with an additional force at the top of the column to account for higher modes
of vibration. The moment at the base is given by

Mpase = L(0.07T + 2/3(1 - 0.07T))-V = CyeV (14)

Following design recommendations for design of tall distillation columns (Ref.
14) the stress in the bolts 1s expressed as:

4
-_-_l__(_]_’ﬁe______) (15)

where N is the total number of bolts, A.D is the cross sectional area of a bolt
and Dy is the bolt circle diameter. The limit state equation 5 is then given

by
g(X) = o, - PGA'G) + G,

where Gy = 4W-C1002/(AbNDb) and Gy = W/(NAb). (16)

The random variables in equation 16 are listed in Table 1. The
corresponding probability distributions are also identified in that table.
Implementation of the FOR method with the limit state given by equation 16 is
relatively straight—forward. Probabilities of failure of a hypothetical
column 100 ft high and with a diameter of 6 ft where obtained as a function of
the peak ground acceleration level. Figure 3 shows the failure probability
conditional on peak ground accelerations for first yield in the bolts of that
column.

The second failure mode important for tall columns is buckling of the
supporting skirt. A rigorous random vibrations analysis for this limit state
is very complicated because of the non-linear behavior of the structure after
the first yield in the bolts. The simplified approach, however, can be
modified as follows.
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The failure state of the column is defined as the stress in the
supporting skirt shell reaching the critical buckling load given by

- 2Bt .oy (p/2t) (17)
D/3(1-v2 )
where E is Young's modulus, t is the thickness of the skirt, D is the outer

diameter of the skirt, v is Poisson's ratio, and ¥ is a reduction factor based

on D/2t. Using the well known equation for maximum stress o . = Mpage/S +
W/A, where S is the section modulus and A is the cross sectiona}i area o% the

column, the limit state equation is obtained as follows
g(X) = 0, - PGA<G3 + G

g
cr

Gy = L(0.67 + 0.0233T)(1.4v/0.3/T)D"

6, = p'(0? + D;%)/(8D) (18)

D' = 32 WD/ [n-(0? + ;)2

where D. is the inner diameter of the column. Table 1l lists the variables in
equation 18 which were considered random and their corresponding probability
distributions. Probabilities of failure for the hypothetical column described
above were also computed using equation 18. Figure 3 shows the probability of
failure conditional on the peak ground acceleration. As expected, the failure
probabilities for first yield of the bolts are consistently greater than these
for buckling of the skirt. For overall systems analysis, however, both
failure modes may be of importance.

CONCLUSIONS

Several methods are available for the evaluation of failure probabilities
of structures at large industrial facilities. These methods were reviewed
with the objective of identifying their advantages and disadvantages when
implemented in a large systems analysis procedure. A simplified method for
reliablity analysis of structures is presented based on the first order
reliability approach. Simplifications of the limit state equations are
especially useful for the application of the first order reliablity method.
The simplified form of the limit state equation is used for the specific
example of tall distillation columns. A theoretical formulation of the limit
state based on random vibrations is also presented to illustrate the degree of
difficulties encountered in implementing the FOR method. The simplified
equation appears to provide sufficiently good description of the failure state
and corresponding failure probabilities are easily estimated.
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Table 1 Varifables used in Limit State Equation
First Yield in Bolts Buckling of Skirt
Variable Distribution & Parameters Variable Distribution & Parameter

¢ Normal (Cj, 0.4 Cj) Cp = 48.55 ¢ Normal (Cy, 0.6 C;) T = 62.6/0.3/T
Cy Normal (Cy, 0.15 Cy) C, = 825.1 Cy Normal (Cp, 0.15 Cp) T, = 69T
oy Normal (ay, 0.05 ay) g = 33 ksi T Normal (T, 0-_1-0 T) E = 0.898-s
N Deterministic; N = 16 bolts ¥ Lognormal (ln¥, oy) ¥ = 0.349; oy = 0.0744
W Deterministic; W = 60 kips w Deterministic; W = 60 kips
Dy Deterministic; Dy = 78 in B Deterministic; E = 29x106 psi
Ab Deterministic; Ab = 2,3 an v Deterministic; v = 0.25

t Deterministic; t = 0.25 in

D Deterministic; D = 6.0 ft

Dy Deterministic; Dy = 5.97¢ ft.
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Figure 1. Diagram of
a distillation column

BOLT YIELD FAILURE. MODE

Probability of Failure

Figure 2. Diagram of cross section
of the base of the column and
corresponding stress distribution.

SKIRT BUCKLING
FAILURE MODE

0.5 1.0 1.5 2‘,o
Peak Ground Acceleration (g)

Figure 3. Probabilities of failure of column
conditional on input ground acceleration.
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