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SUMMARY

Renewal processes are used in this paper for the interpretation of
earthquake occurrxences. The probability density function of interoccurrence
times is a mixture distribution. The first component accounts essentially for
aftershocks, the second component accounts essentially for longer recurrence
times and is particularly useful when the occurrence process is not a memory-
less process. Some consequences of the use of the model in earthquake
prediction and in damage evaluation are discussed in the paper.

INTRODUCTION

Many authors agree on the opinion that Poisson process is not always
suitable for the interpretation of earthquake occurrences. It is true that a
more complicated model could lead to serious misleadings due to the paucity
of data. On the other hand, there are problems in which the non-stationarity
and the memory of the process, if they exist, are of the utmost importance.
This is the case, for instance, of special structures with finite life and of
earthquake prediction.

It is impossible to mention here all the models that have been proposed
as improvements of the Poisson model. Main referxences are Ref. 1 to 8.

The model that is presented in this paper derives primarily from the
remark that renewal processes (r.p.) lead to the simplest model that includes
the memory of past events. A r.p. is a semi-Markov process in that it has
memory only of the last event. A r.p. is defined by initial conditions (time
to measured backward to the last event) and by the probability density
function (pdf) £ (t) of interoccurrence time (i.t.) T.

p Let us now remember some properties of r.p. that will be utilized in the
next sections.

The r.p. of larger events is defined when their conditional probability
T (given an earthquake) is known. Precisely, the i.t. T of larger events has
2 pdf £ such that ¥

* fT ()

£y = —

1= (1-m) £ () (1)
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where * indicates Laplace transform (L.t.) (Ref. 9, 10). Taylor expansion of
(1) furnishes the moments of fy. In particular the mean value “y is simply:
U
= e— 2
M, = T (2)
where U is the mean value of i.t. T.
The renewal density h(t, to) is defined by:

h(t, t_)dt = P{(at least) one event in [t,t+at) } .

h(t, to) is related to i.t. as follows (Ref. 10, 11):
*

. fw (v, to)

h ('Y, tO) = 12 (3)

*
1-£, ()

where w, is the waiting time to the first event (or recurrence time) when t,
elapsed from the past one.

The dependence on t, vanishes in equilibrium processes. This is the case
when the time origin is a sampling point chosen at random over a very long
time interval (Ref. 11, 15). In this case

1—FT(t)
£ (t) = ——— (4)
W1 H
and the expected value u of i.t. T coincides with the return period as usual
ly defined.

Assume now that, after an earthquake, the next one can occur
- either, with probability p, rather soon because energy is not yet completely
released (aftershock)

- or, with probability 1-p, rather late because energy is already completely
released and it has to be accumulated again ("long term").

Call & the i.t. of aftershocks and T(E?e i.t. of long term shocks. The
above-mentioned assumption can be written

£ (t) =pf£

. g(t)+(1—p) fT(t) . (5)

The choice of f_ and f_ can be suggested by the wanted characteristics
of their hazard rateg(h.r.). The h.r. of £, should be suddenly rather large
and then it should decrease to zero. If long~term process is with memory, the
h.r. of fT should be increasing, possibly with a finite asymptotic value.

Two pdf with the wanted characteristics, and simple enough for handling,
are represented by a log-normal distribution (LN) and a I' distribution with
shape parameter a>l. If only integer values of a are considered for simplicity
(Erlang distribution), a = 3 is the minimum value for which the renewal

process defined by fT has a renewal density h(t, to) oscillating around 1/yr

(1) Kameda and Ozaki already proposed to distinguish different behaviours in
a seismic r.p.. They used a double Poisson process (Ref. 8).
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(u, is the mean value of the I' distribution). With a = 3 the oscillations
will die out more rapidly than with a>3.

In the next sections a few applications of the model to Italian sites
are presented. Moreover, the consequences of the application of the model to
earthquake prediction and to damage evaluation are discussed.

CASE STUDIES

We refer first to seismic hazard at a site: the city of Messina. Intensi
ties MCS from 1670 to 1970 are used with the following attenuation law of
epicentral intensity I, (d = epicentral distance in km):

I =1 if 4223 ; I =1I,+7.32-2.33 Ind 1if d>23 ,

which gives a rather weak attenuation.

Only events with local intensity I26 are considered, with no more than
one event per day.

The whole set of i.t. has been fitted with maximum likelihood method
using an exponential distribution, a P3 distribution and a mixture distribu
tion lognormal—T3. The same has been done after the exclusion of events with
i.t.<At (At = 0.3, 0.5, 1, 2 years). The whole set corresponds to At = 0.003
years (one day).

Table 1 shows the index S*, based on the differences between theoretical
and observed cumulative distributions (Ref. 12). In each column the values of
S; are divided by the one corresponding to the mixture distribution. More
statistical details are contained in Ref. 13.

Table 1 - Messina - I26 - Values of S;

At
fT(X .003 .3

.5 1 2
exp 8.4 2.2 1.4 1.0 1.4
Ty 10.2 4.6 3.6 2.0 1.4
LN-Ty 1 1 1 1 1

The mixture distribution shows generally better fits than the others.
When At = 2, exponential and [y distributions are equivalent.

The results concerning the LN—l“3 distribution are shown in Table 2. The
mean value of i.t. is plotted in fig. 1 versus At (continuous line).

The values of T are conventional (they depend on the definition of after
shocks). If aftershocks are defined by means of a fixed time window At, the
mean value T coincides with u and largely depends on the value assumed for At.
If aftershocks are interpreted by the lognormal component of the mixture
distribution, then the mean |, of the P3 component is an estimate of T. Table
2 shows that Hp is fairly independent of At.

Obviously a value of At for which M= Hp (0t = 0.003) does exist. How
ever it would be greater than 2 years and shows little meaning.

It is interesting that using the mixture distribution on the whole set
of data we get reliable results for T distribution without introducing an
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(arbitrary) time window At.

Table 2 - Messina - I26 - LN-T3 distribution

At 0.003 0.3 0.5 1 2
number of i.t. n 164 66 58 49 37
mean i.t. I 1.64 4.06 4.62 5.47 7.25
p 0.83 0.51 0.44 0.32 0.17
M 0.34 0.77 0.95 1.31 2.81
Hp 7.71 7.47 7.48 7.44 8.18

scale parameter of T 0.389 0.402 0.401 0.403 0.367

3 fr
The results obtained with events I28 are shown in Table 3.

Table 3 - Messina - I28 - LN-P3 distribution

At 0.003 0.3 0.5 1 2

n 15 10 10 9 8 4

u 16.0 23.9  23.9 26.5 30.0

p 0.76 0.59 0.59 0.55 0.37 N

Mp 54.6 54, 54.3  54.1 45.8
exXp 3.4 2.1 2.1 1.8 1.7 . 4t

s: Iy 4.3 3.1 3.1 2.7 2.4 38 !
IN-Ty 1 1 1 1 1 Fig. 1

The general trend is similar to the one shown in Table 2, even if the
paucity of data makes the results less reliable. In particular, to get u =y
(At = 0.003) it would be necessary to use a value of At which is out of ppg'
portion with any aftershock definition. With regard to the estimation of T,
note that: a) with usual values of At we obtain uw = 24+30; b) a classic appli
cation of Gumbel theory gives Hg = 70; ¢) from the LN=T'4 distribution we
obtain Mp = 55. Eeven if conventional, up has the advantage of being
independent of At.

However jp and y take account only of events 128, which are few. It seems
better to rely on Hp (126) and to derive from it the value of Hp (128), using
eq. (2).

An estimate of 7 can be obtained from the ratio between the number of
events N(I28) and the number N(I26), which is plotted in fig. 2 (continuous

line) versus At. In order to read T on
. _%g;g only At the diagram we can use the value Otg
______ foxr which F,.(t) = 0.9. We obtain
Aty = 0.45, m = 0.185, and hence
T(128) = 7.71/0.185 = 42 years, which

~

17 looks more reliable than pp = 55. In
any case the definition of T remains a
3 s s conventional one. However it does not
’ i depend strongly on the particular
fig. 2 distribution (LN) assumed for the
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interpretation of aftershocks. In Table 4 a comparison is shown between LN—F3
and two other mixtures, one (w —F3) with the first component represented by a
Weibull distribution with shape parameter a = 1/2, the other (wz—F3) with the
shape parameter free, under the condition a<l in order to make h.r. decreas

ing.
Table 4 - Messina - At = 0.003
I26 128
LN—P3 wl-T3 w2-F3 LN—F3 wl—P3 w2—T3
p 0.83 0.83 0.80 0.76 0.73 0.74
Hp 7.71 8.02 7.34 54.6 54.4 54.6

The results discussed till now do not change substantially if a classic
space-time window is used for aftershocks, instead of a mere time window At.
For example, in fig. 1 and 2 the dashed lines derive from a space (30 km)-
time window. The values of Mp for At = 0.003 are ur(IZ6) = 7.72, ur(128)=54.9.

The attenuation law that has been used is fairly "weak", so that the
results could be referred to a seismogenetic zone. If a steep attenuation law
is used, the numerical results obviously change substantially. However the
general trend remains the same.

Analogous tests have been carried out for different Italian sites. The
general trend can be summarized as follows: a) a mixture distribution shows
always the advantages that we saw for Messina; b) if the site is well inside
a seismogenetic zone (Irpinia, Friuli) the best fitting is obtained when the
second component of the mixture has a memory (TB); c) if the site is influ
enced by various seismogenetic zones (Firenze), the best fitting is obtained
when the second component is memory-less (exponential).

Mixtures better than LN—I‘3 could obviously be found for particular cases
with memory. However it is already justified to look at the influence of the
interoccurrence model on the results regarding particular problems, by
comparing exponential and T3 interpretation of i.t. T.

INFLUENCE OF INTEROCCURRENCE MODEL ON PREDICTION

Consider a seismogenetic zone with T(I26) = 7.5 years, m = 0.2 and hence
T(I28) = 37.5 years. Assume T constant for T>At5. If t is the time elapsed
from the last event I26, and t>At,, the "immediate risk" of an event I26 is
defined as P(E) = P{t<TSt+dt/T>t} and is given by:

P(E) = 4(t) d t

where ¢(t) is the h.r. of an exponential distribution or of a I'y distribution,
depending on the mixture used. The immediate risk of an event I28, i.e.
P{(t<T<t+dt) N I28/T>t}, is given by:

P(E) =7 ¢(t) d t (6)

Suppose now that: a short-term precursor F is monitored; F is correlated
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only to events 1028; its useful warning time is 6t = 1 week (if the earthquake
does not occur within 1 week, F is a false alarm). The average probability of
false alarm p is derived from the number £ of false alarms and the number s
of successful alarms over a long period of observation: p = f£/(f+s). Suppose
P = 0.5.

The background risk (disregarding the precursor) at t, of an event 128
in the next week, is approximately given by eq. (6) with dt = 1 week:

P (E) -2t $(t) = 0.0037 ¢(t) .
54

Suppose that false alarms are due only to the fact that the precursor is
sensitive also to another phenomenon, independent of the seismogenetic process
and with constant frequency. In this case (Ref. 14) the probability of false
alarm at t is p = 1/|1+a P(E)I with 0 = constant, and hence p depends on ¢(t).

If an exponential distribution is assumed for T, ¢(t) is constant,

p = constant = p, and the conditional probability P(E/F) = l-p = 0.5, while
P(E) = 0.000494.

If a T distribution is assumed for T, the constant a can be determined
as indicated in Ref. 14 and the conditional probability P(E/F) may be quite
different from the previous one as shown in Table 5, where t is the instant
at which F occurs (t is always measured from the last 126).

Table 5
t (years) 2 5 10 20 30 40
P(E/F) 0.157 0.330 0.431 0.489 0.510 0.522
P(E) 0.000223  0.000592 0.000910 0.00115 0.00125  0.00131

DAMAGE EVALUATION

Consider the process of all events I26 at a site. Given an earthquake,
the mean value C of damage cost is defined when the pdf of local intensity
and the vulnerability of building sample are known (Ref. 16). The expected
present cost of all future damage depends on to and on the r.p. defined by
eq. (5). At, being small, £f_ influences the total cost only in that it
amplifies T. So a weight Py can be defined according to the importance of
clustering. For example:

At
Pel = exp (p + —:— ) .

Call C the amplified cost C = Py C. Then the expected present cost E(D)
of all future damage (only governed by fT) is: .
D) = ¢ 3, Fexplyt) £ (&) at's C L€* (y) ¢ ikl (1)
= expi- e =
it o Ry Wyt 1-£7.07)
where £ (t) is the waiting time to i-th event and y is the discount factor.
Due to eq. (3), from eq. (7) we obtain:
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E(D) = C h™(y, tg) (8)

If T has an exponential distribution, eg. (8) becomes:

E(D) = L ; (9)

YT
so E(D) does not depend on tO and corresponds to an annual cost C/E.

If T has a F3 distribution, eg. (8) becomes:

2 —2 — =2
97 to (3+YT) +2tOT (3+yT) +2T
E(D) = C 3 = ; (10)
(3+yT) *-27 ot2 + 6t T + 2T

so E(D) depends on t . In the case of equilibrium process eq. (7), due to eq.
(4) , does not depend on t, and E(D) has the same value in the two cases.

The influence of tO on E(D) given by eg. (10) may be illustrated by means
of the ratio v

—2 — — -
E (D) 2T +2tOT (3+YT)+t§ (3+yT)2

t
v = o = > . . (11)
E(D 2T +6t T +
( )to=o 6 o 9to
Obviously Vv increases with t . For example if t = T = 50 years and

Y = 0.07, we obtain v = 3.37. If the process had stronger memory, for instance
a = 10, with the same data we would obtain v = 9.8, and with a = «® v - 33,1
(Ref. 17).

The ratio v does not change if only the damage due to the first event is
considered.

It is possible to show that, for to = 0, the value of E(D) derived from
an exponential distribution is greater than the value derived from a T3
distribution. However, for t sufficiently large, the second value is greatex
than the first one. For example, with previous T and vy, this happens when
£,>0.48 T.
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