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SUMMARY

Recent geophysical studies have indicated that an earthquake recurrence
interval and the size of the preceding event are positively correlated. This
observation is the basis for the deterministic time-predictable recurrence
model of Shimazaki and Nakata. Using the basic assumptions of the time-
predictable recurrence model, we develop a stochastic model of earthquake
occurrence which incorporates temporal dependence. This paper discusses the
formulation of the model and the effect of including temporal dependence.
Comparisons are made with other models and with observed data. Results
indicate that currently used Poisson models may give unconservative estimates
of the seismic hazard.

INTRODUCTION

Consideration of the temporal and spatial patterns of earthquake
occurrence is an important aspect of seismic hazard analysis and has drawn
much attention. Many of the techniques currently used for hazard evaluation
rest on Poisson assumptions for earthquake occurrences (Ref. 1). Although a
Poisson model is an adequate description for some available occurrence data,
it is not consistent with any geophysical description of the earthquake
generating process. A model which is based on physical concepts and which
leads to more accurate estimates of earthquake occurrence probabllities is
desirable in seismic hazard analysis.

Recent developments in seismology and geophysics have lead to two
alternative representations for earthquake recurrence patterns. These include
the "time-predictable” and "slip-predictable” models (Refs. 2-3). In this
paper the time-predictable assumptions are used to develop a stochastic model
for earthquake occurrence. The main characteristic of this model is that the
time of occurrence of future earthquake events depends on the size and the
time of occurrence of the last event. Thus the larger the last earthquake,
the longer the time to the next earthquake. The hazard along a section of the
San Andreas Fault is computed for illustrative purposes. The results from the
proposed model are compared to those from the Poisson model. The comparison
shows that the Poisson model yields unconservative results when the last
earthquake event occurred a long time before the forecast time. This
observation i1s particularly important when assessing the seismic risk to
critical facilities.
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TEMPORAL DEPENDENCE AND THE TIME-PREDICTABLE MODEL

Temporal dependence between seismic events is apparent in some earthquake
catalogs. In particular, histories of earthquakes on a single fault tend to
indicate a positive correlation between the size of an earthquake and the time
to the next event. Patterns in the data indicate that larger earthquakes are
followed by longer quiet periods. Thus, a relationship between the time to
the next earthquake and the size of the current event enables one to model the
time between successive earthquakes. This property, called "time-predictable
recurrence”, enables the forecasting of the time to the next event glven the
size of the preceding earthquake.

Time-predictable recurrence can be described by the following model. A
time history of the stress accumulation and release on a section of a fault is
represented schematically in Figure la. Stress bulld-up occurs at a constant
rate until the accumulated stress reaches a threshold. Then an earthquake
occurs and some portion of the accumulated stress is released. The size of
the earthquake 1s characterized by the change in stress level on the fault;
the greater the change in stress, the larger the event. The occurrence time
of the next earthquake is determined by the length of time that is needed to
accumulate sufficient stress to reach the threshold and trigger another
event. Therefore, the interarrival times are determined by the sizes of the
earthquakes and the rate of stress accumulation. Time-predictable recurrence
makes it possible to forecast the time of the next earthquake given the size
of the preceding event, but gives no information about the size of the
following event.

Presently, stress accumulation and release are difficult te measure.
Therefore other quantities which are more easily obtained are used to
determline parameters for the model. Coseismic slip 18 proportional to the
change in stress level on a ruptured segment of a fault and can be used to
estimate the time to the next earthquake. Figure 1b 1llustrates the relation
between coselsmic slip and time interval between seismic events. The diagonal
line represents the average cumulative slip ou a fault over time and its slope
is the average slip rate. It is evident that events with larger slip are
followed by longer perliods of inactivity than smaller slip earthquakes.
Therefore, measurements of average slip in an earthquake can be used to

forecast the time of the next seismic event; that is, we have time-predictable
recurrence.

Evidence of time-predictable recurrence for small strike-slip
earthquakes, large thrust events, and large earthquakes along plgte boundaries
of the convergent and strike-slip type faults is presented in the literature
(Ref. 2-5). Investigators have used geological as well as historical data to
successfully estimate repeat times for earthquakes. The term “repeat time”
refers to the perlod of time between two earthquakes which cause ruptures to
occur along nearly the same portion of plate boundary (Ref. 3). It is
significant to note that many types of earthquakes have exhibited time-
predictable behavior. However, earthquake catalogs with these characteristics
are found mostly along plate boundaries.
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MODEL FORMULATION

The basic assumptions of the deterministic time-predictable model are
adopted in the formulation of the stochastic model of earthquake occurrence.
Stress on a section of the fault accumulates at a constant rate, resulting in
a linear stress build-up. Earthquakes occur when the stress reaches a
threshold level. Stress is released, and the size of the release determines
the size of the assoclated earthquake. The sizes of successive earthquakes
are assumed to be independent and identically distributed random variables.
The inter-event times are random variables with a distribution that is
conditional on the size of the last event.

A Markov renewal process describes the visits to the magnitude states in
time. At present, sufficient information on the stress released in a given
size earthquake 1s not available. Thus, the states of the process are defined
by magnitude ranges with associated coseismic slips. Let E = [1, 2, ..., N]
be the set of mutually exclusive magnitude states, where N is the threshold
state. We define Yn as the state on the fault after the nth transition, and
T as the time of the nt" transition. Thus the set {Y n>0} are random
variables assuming values in E and the set {T n>0} are non—negative random
variables such that 0<T0<T {... The sc0chastic process {(Y Tp): n)O} is a
Markov renewal process provided that

P[ n+l~ j: T < tlYo,"': Yn; To)"'y Tn] =

P[Yq41= 3» Tpa1~ T < €[Yy = 1]

for all 1, j € E, n > 0 and t > O. (1)

According to thils definition, the joint probability of the next state and the
time of the state change depends only on the present state of the process and
is independent of past history.

The shape of the release distribution 1is calculated from the Gutenberg
and Richter frequency-magnitude relation

logyg N(m) = a ~ bm (2)

where N(m) 1s the number of earthquakes with magnitude > m during a specified
time interval in a specified region; a 1s a constant which describes the level
of seilsmicity; and b is a constant which describes the relative number of
large to small earthquakes. It follows that the magnitude M has a truncated
exponential distribution, i.e. for mg < M < m, the cumulative probability
distribution is given by
1 - exp [-B(n-my)]
(3>

FM(m) il exp [—B(mu -mo)]
where B = blnl0, m, is the largest magnitude event which can be expected in
the region; and my is the smallest magnitude considered in the model, (Ref.
6). The transition probabilities for the stochastic recurrence model are
developed by discretizing the cumulative probability distribution FM(m)_

It 18 assumed that the time to the next event is Weibull distributed and

conditional on the present state 1 with a cumulative probability distribution
glven by Fp(t|i) =1 - exp[—kitvil for Ay, v420, t>0 (4)
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where >‘i and v4 are constants. The Weibull distribution is desirable because
the associated hazard rate r(t’i) increases with time 1f vy is greater than
1. The hazard rate for this distribution is -1)

r(t|i) = Aivit("i

In addition, the Weibull distribution has been fitted to some interarrival
data for a section of the San Andres fault (Ref. 7). Traditionally the
exponential distribution has been used to represent the interarrival time
probabilities. The hazard rate for the exponential distribution is a
constant, indicating that interarrival times are independent, and the
earthquake occurrence process 1s memoryless.

Probabilities of occurrence and probabilities of exceedence are
calculated using recursive relations for a discrete-time semi~Markov process
(Ref. 8). Define Gi(j,klt) as the probability that k visits to state j will
oceur in time (0,t) given state i is entered at time O, and define hy .(m) as

the probability that a transition from i to r will occur in time m. en for
the present model formulation
n t t
k = + h G k-1
6, (3okle) =1 I py by (G (3,klem) + ] py by (m)C (5 k-1]e)
g-‘;)’ n=0 n=0

+ 8()Hy (t) (5)

Equation 5 is used to formulate the probabilities of exceedence, expected
numbers of events, and the probability of an earthquake of size j in time
(t,t+x), given no earthquake occurs in time (0,t) and an earthquake of size 1

occured at time 0. For a more detailed description of the model formulation
see Ref. 9.

APPLICATION OF TIME-PREDICTABLE MODEL

As an 1llustration, the stochastic time-predictable recurrence model 1s
applied to a section of the San Andreas fault that ruptured during the 1906
San Francisco earthquake. Probabilities of at least one event in time (t,t+x)
given no events have occurred in time (0,t) are computed. In this example,
only events larger than magnitude 5.0 are considered. It is assumed that
smaller events could be modeled by a Polsson process, and the resulting
probabilities combined with those computed from the time-predictable model.
The study zone shown in Figure 2, is the southern part of the 1906 rupture
which extends from San Francisco to San Juan Bautista. The San Andreas fault
is a strike-slip fault located on the boundary between the Pacific and North
American plates. The catalog of earthquakes on this section of the fault
indicates that the selsmicity is cyclic (Ref. 10). Periods of increased
activity are an indication that stress levels along the fault are approaching

the threshold. Periods of relative inactivity have occurred after major
events, when the stress was at a lower level.

Parameters for the stochastic time-predictable model are determined using
slip rates and earthquake histories for this region. A catalog of earthquakes
of magnitude greater than 5 between 1855 and 1980 is used to estimate the b-
value used in equations 2 and 3 (Ref. 10). A b-value of 0.625 is used as a
parameter in the transition probability distribution. Slip 1is wused to
represent the accumulation and release mechanism previously described. Data
from Ref. 11 for strike-slip faults is used to determine a log~linear relation
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between Richter magnitude and coseismic displacement. We assume that the
holding times are Weibull distributed with v = 2; it has been shown that
interarrival times on other sections of the San Andreas fault can be modeled
by this distribution (Ref. 7). The parameter, )y, for the holding time
distributions was chosen assuming the slip rate is 20 mm/yr (Ref. 10) and that
the mean displacement, D, resulting from a given magnitude earthquake is omne
half the maximum displacement, D, in meters, estimated from

1nD = 1.26 M - 8.31 (6)

We have chosen parameters which are reasonable and which will illustrate the
difference between the time-predictable and Poisson models of earthquake
occurrence. The occurrence rate, A, for the Poisson model is estimated from
the catalog of earthquakes greater than magnitude 5 in Ref. 10 and equation 2.

Figures 3 and 4 are plots of the probability of at least one earthquake
of magnitude greater than or equal to m in the next 50 years given there has
been no major seismic activity since the last large event. In Figure 3, the
last event (mo) is assumed to be a Richter magnitude 7.0 to 7.25 earthquake,
while in Figure 4 m  is in the range 8.0 to 8.25. These probabilities are
shown for a set of four different initial conditions; a large earthquake just
occurred (t=0) or 1t occurred 50, 77 or 100 years before the present.
Probabilities of exceedence computed from the Poisson model are also shown.
All of the probabilities are computed for a 60 km segment. Since,
probabilities computed with the Polsson model are insensitive to the time of
occurrence of the last event, it 1s evident that the Poilsson model can be
unconservative. While the difference in exceedence probabilities 1s small for
larger magnitude earthquakes, this effect is quite pronounced for earthquakes
of magnitude less than about 7. As the time since the last earthquake
increases, the Polsson model becomes less desirable for computing selsmic
hazard.

Figures 5 and 6 show the probabilities of having at least one earthquake
greater than or equal to magnitude 7.0 in (t, t+x) given no major seismic
activity has occurred in (0,t) and the last major earthquake was either a
magnitude 7.0 to 7.25 or an 8.0 to 8.25 event, respectively. The
probabilities are shown for the same four values of t as in Figures 3 and 4.
The Poisson model gives larger probabilities of exceedence than the time-
predictable model when the initial event is 8.0 to 8.25. However, when m_ ig
in the range 7.0 to 7.2 the Poilsson model gives unconservative estimates of
the seismic hazard. Therefore, the independence assumptions inherent in the
Poisson model do not necessarily mean that it will give an upper bound on
seismic hazard.

CONCLUSIONS

This paper presents a stochastic model based on the time-predictable
hyposthesis of earthquake occurrence. A Markov renewal model was developed as
a stochastic representation of the time—predictable hypothesis. It was shown
that probabilities of exceedence computed with the Markov renewal model depend
on both the time of occurrence and the size of the last earthquake.
Comparisons with the Poisson model indlcate estimates of exceedence
probabilities computed with the Poisson model can be unrealistically low in
certain cases. This effect can be extreme if the last event was a moderate
earthquake and a long period has passed since its occurrence.
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