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SUMMARY

Based on the Weibull distribution, a quantitative procedure is
developed for the evaluation of seismic risk in a particular region.
Utilizing the maximum-likelihood criterion, an efficient algorithm for
estimation of the parameters of Weibull distribution is developed.

This procedure is applied to the earthquake data of Iran recorded during
1902-1975. Typical results are presented in terms of the probabilities
of exceedance of the peak ground accelerations for two major cities

of Iran. The results of this investigation are compared with the
previously obtained results of seismic risk analysis in Iran based on
the stationary Poisson model.

INTRODUCTION

A realistic and rational approach to the earthquake resistant design
of major structures must undoubtedly take into account the probabilistic
nature of earthquake occurrence. Probabilistic assessment of seismic
hazard at a site has been the focus of considerable research and several
analytical methods have been developed in recent years. In conventional
method of seismic risk analysis, the Poisson probabilistic model is
usually employed as the stochastic model of earthquake occurrence in time
(Refs. 1-7). Seismic events in this model are assumed to be independent
in time and space.

The expected number of earthquakes in a given period in this model is
constant and often given by the following log-linear relationship:

log N(m) = o + fm

Where NM(m) is the number of earthquakes of magnitude greater than m, and
o and B are regilonal parameters to be found by a regression analysis of
existing and pertinent data. However, the hazard function, h(t), which
represents the instantaneous probability of failure for the Poisson
process is a constant. This function is defined by

f,.(t)

T
h(t) = I:g;fgy"" ¢
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Where, T is the arrival time of an earthquake of certain magnitude, and
fr (t) and Fp(t) are the probability density function and cumulative
distribution function for the earthquake arrival time, respectively.

For the Poisson model h(t) = A = mean arrival rate of the earthquake.
This simply means that the occurrence or non-occurrence of an earthquake,
e.g., in this year does not change the probability of occurrence or non-
occurrence of another earthquake in the future.

However, according to the well-known elastic rebound theory of
earthquake occurrence, when an earthquake occurs, it releases the
accumulated strain energy, which may in turn, decrease the possibility
of observing another earthquake until the strain energy has again
accumulated. The use of stationary Poisson model may be appropriate
for regions with relatively uniform seismic activity. However,
application of this stochastic model for regions where infrequent but
large earthquakes occur after long periods of quiescence is inconsistent
with the very phenomenon of straln build-up in parts of the earth.

To overcome this shortcoming, other stochastic models for seismic
risk analysis have been proposed including Markov and Semi-Markov
processes (Ref. 8). However, most of these models are handicapped
by the need to a large quantity of data for evaluation of their
parameters. Use of the Weibull distribution which 1s a somewhat
modified form of an asymptotic extreme-value model for seismic risk
evaluation is proposed in Ref. 9. The Weibull distribution has been
used extensively in failure and reliability analyses (Refs. 10-~11).

In Ref. 12, using the motion data obtained with the geophyaical model,
Weibull distribution has been utilized to calculate the consistent
probability power spectral density of the ground acceleration at a site.
In this paper, based on the Weibull distribution, a quantitative procedure
is developed for the evaluation of seismic risk in a particular region

in which the time dependency of earthquake occurrence is taken into
account. In the following section, utilizing the maximum-likelihood
criterion, an efficient algorithm is presented for the estimation of

the parameters of Weibull distribution.

ALGORITHM FOR ESTIMATION OF THE PARAMETERS OF THE WEIBULL DISTRIBUTION
If we denote the arrival time of an earthquake of magnitude greater
than a given value m by T, the probability density function, fp(t), and

the cumulative distribution function, Fp(t), of the Weibull distribution
can be written in the following form

b b
fT(t) = E;%EE) bm'l exp [~<;£> m] >0 (2)
m\'m m

£\Pn
FT(t) =1 - exp |- (;—) >0 (3)

m

The parameters ay and by are called the scale and shape parameters of the
Weibull distribution. In the present application, the subscript m refers

192



to the class of earthquakes with magnitude greater than m. The hazard
function for the Weibull distribution is given by

_ bm t bm—l )
ne) = (= (4

a
m\ m

If the value of the parameter b_ is greater than one, the hazard

function increases with increasing time which is consistent with the

elastic rebound theory of earthquake generation.

In order to estimate the shape and scale parameters of the Weibull
distribution, we employ the method of maximum likelihood (Ref. 13).
Denoting the arrival time of the ith earthquake occurrence by ty and the
number of occurrences by n, the likelihood function for the Weibull
distribution and its natural logarithm can be written as

n bm ° tl, t2’ P tnbnfl
L(a_, bmltl, Eyr o e v s E) =i1'11 £, (¢, [a,b) = (2 -
= m a
n b
expl- 2 (c,/a) " (5)
i=1
n n bm
log (L) = n(logbm - b lagam) + (bm—l) ;El log £ - ;El (ti/am) (6)

Now, we set the partial derivatives of the function log(l) with respect
to ay and by equal to zero.

dlogl a bm
fedr =05 2 (e /a) "= )
m i=1
, n n b
SHBL -0 Ronloga + 3 loge, - 3 (r/a)" log (e /a) = 0 (8)
m mn i=1 i=]
The above two equations, after some manipulation, can be written as
n b 1/b
o = 8(by) = [ 2 (ti)m/“] " )
i=] b
n n "
f -+ 3 owe, [1- e /ap ] (10)

One may substlitucte for a_ in Eq. (10) from Eq. (9), the result will
be a nonlinear equation for thle shape parameter b_. In order to solve
the nonlinear equation (10) for b_ we use the New%on—Raphson iteration
procefure (Ref. 14). According to this procedure, the value of the
shape parameter at the end of the iteration i+l is given by

Gy g1 = Gy = € [0 17 e[ 6] GED
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The denominator in the last expression which is the derivative of
function f(bp) (Eq. 10) can be shown to be

b
n m
£ ) = -;% -3 {(ti/am) logt, [—(bm/am) 8 () + log(ti/am)]} (12)
m

i=1

in which g' (bm) is the derivative of function g(bm) and given by

1 n bm 1/bm-l n bm 1 n bm 1/bm
") ==]2 c)/] [ (t,) 1tJ~-[2 (e "/
g' (b)) nbm[i=l €) /n 151 i 08ty bri 2t n

n b
1og[ Z () m/n] (13)
i=1

Now, Eqs. (9) - (13) can be used iteratively to find the parameters of
the Weibull distribution.

To start the solution, an initial estimate of the shape parameter
b_ must be given. We muy start the solution with b_=1. At each iteration,
values of functions f(b ), g'(b ), and £'(b_) will Pe evaluated from
Eqs. (10), (13), and (l@), respectively. Then, a new value for b_ will
be estimated from Eq. (11). The convergence of this procedure 1g™
excellent as will be shown in the following section.

SEISMIC RISK IN A REGION

To evaluate the seismic risk in a region, we define the seismic
risk, R(m,t), as the probability of observing at least one earthquake
of a magnitude greater than m in a time period t.

b
R(m,t) = 1 - exp [-(t/am) ™ (14)

In order to present numerical results, we apply this concept to the
earthquake data of Iran during the period 1902-1975, This data consists
of 1787 earthquakes which is collected and analyzed in Ref. 15.

Seismic risk as defined by Eq. (1l4) is evaluated for four time
periods of 5, 10, 20, and 50 years. Results are plotted in Fig. 1. It
is seen that, e.g., the probabilities that at least one earthquake of
a magnitude greater than 7 would occur within this area during the
time periods of 5, 10, 20, and 50 years, respectively, are 0.62, 0.88,
0.98, and 1. The corresponding values for an event of magnitude greater
than 7.5 are 0.24, 0.45, 0.69, and 0.92.

In a previous work (Refs. 1 and 6), the stationary Poisson process
with a long-nonlinear recurrence relationship was used for the forecasting

of the earthquake risk in Iran. According to this model the risk equation
is defined by
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R(m,t) = 1 - exp[~t exp (a' + Bm + v/m)] (15)

where &', B, and Y are the coefficients of the recurrence relation and
are found by a regression analysis of the pertinent drta. Using the
data of Iran, o' = 21.300, B= -2.718, and y=-30.318. Results obtained
from Eq. (15) are also plotted in Fig. 1 with dashed lines. It is
observed that, the probabilities that at least one earthquake of a
magnitude greater than 7 would occur within this ar:a during the time
periods of 5, 10, 20, and 50 years, respectively, zre 0.47, 0.72,
0.92, and 1.00. The corresponding values for an event of magnitude
greater than 7.5 are 0.20, 0.35, 0.58, and 0.89. Figure 1 clearly
reveals that the stationary Poisson process consistently underestimates
the seismic risk.

It should be noted that having chosen a tolerance limit of 0.001
the number of iterations for finding the parameters ay and b, of the
Weibull distribution in most cases is from 2 to 5 and sometimes 6 or 7.
Therefore, it may be concluded that the proposed algorithm is an efficient
method for evaluation of the parameters of the Weibull distribution.
Also, it is of interest to note that the number of iterations for a
given tolerance limit generally increases as the number of data for the
class of seismic event considered decreases.

SEISMIC RISK AT A SITE

In order to evaluate the seismic risk at a site, the spatial
distribution of earthquakes should be accounted for using different
source models. In order to compare the application of Weibull distribution
with the previous investigation of the seismic risk in Iran, the earthquake
data of Iran was divided among 19 line source models and 2 area source
models, as presented in Ref. 6. In this modeling, only one focal depth
equal to the average of the focal depths of all the pertinent earthquakes
is assigned to each line or area source. Also, a peak ground acceleration
(PGA) attenuation relation in the form
C,m
2

a=¢C/ e (Rh + 03) €4 (16)

is used where a is the PGA, Rh is the hypocentral distance and C., C,,
17 72
03, and C&’ are the regional constants.

Assuming the spatial independance of earthquake occurrence on
different sources, one obtains the following equation for the risk due
to the multi-source model occurrences (Ref. 12):

N b
R(m,t) = 1 - exp [ - Ea Pim (t/aim) im ] an
1-:

In this equation, N 1is the number of the source models and p, is the
probabllity of occurrence of an earthquake of greater than m, given that
an event has occurred at source i.
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Because, according to Eq. (16), there is a one-to—one relation
between the PGA and the magnitude, using Eq. (17) one can find the
probability of observing at least one earthquake with PGA greater than
some specific value a at a given site. Details of this analysis will be
published elsewhere. However, preliminary results of the seismic risk
analysis in terms of the probabilities of exceedance of different PGA
levels for two cities are given here. These cities are Tabriz in the
northwest of Iran and Bandar Abbas in the south of Iran. The results are
presented with solld curves in Figs. 2 and 3. For ths sake of comparison,
the results of a previous investigation based on a statiomary Poisson
process (Ref. 6) are also shown with dashed lines on the same figures.
These lines are based on the 1902-1975 data period. However, the available
data base in Iran is nonhomogeneous. For instance about 97 percent of
the 1787 earthquakes have been recorded during the 50-year period from
1925 to 1975. To take the effect of this nonhomogeneity into account, the
recurrence relation parameters for use in the Poisson model are also
calculated based on a data period of 50 years (Ref. 6). The results are
shown with the dash-dotted curves in Figs. 2 and 3.

An examination of Figs. 2 and 3 clearly reveals that application of
Weibull distribution for evaluation of the seismic risk at a site produces

consistently much higher probabilities of exceedance than the nonstationary
Poisson model.

In conclusion, the results of this investigation show that the use of
the Weibull distribution is a more realistic approach to the problem of

seismic risk at a site. Also, the nonstationary Poisson process apparently
underestimates the seismic risk at a site.
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Figure 3 Seismic Risk at Bandar Abbas for a Period of 50 Years
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