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SUMMARY

A finite element model made of two individual parts is developed to de-
scribe separately the linear and the nonlinear properties of a material.
The linear behavior of each region is defined by an elastic plane stress el-
ement and its nonlinear behavior is provided by inserting a joint element
connected to a boundary of the region. The stiffness matrix of the combin-
ed element is obtained from properties of concrete and orthogonally placed
reinforcing steel. Four hysteretic stress—strain relationships are develop-
ed. The cyclic behavior of concrete under normal stresses is described by
an enveloping parabola from zero to ultimate stress, and a straight line the
rest of the way to the crushing strain. The shear stiffness is assumed to
be a function of normal stiffness for the uncracked state of concrete. The
cyclic behavior of reinforcing steel is described by a simple bi-linear mod-
el, but after the crushing of concrete a new hysteretic relationship is de-
fined which allows the reinforcing steel to buckle in compression. The ap-
plicability of the model is demonstrated by working out two examples of
slender shear walls, and comparing the results with the PCA experiments.

FINITE ELEMENT MODEL

The displacement of a finite element plane stress member is considered
to consist of a linearly elastic part and a nonlinear part. The member is
divided into subregions and the respective behavior of these subregions are
described by two different types of elements. Constant stress triangles are
used to represent linearly elastic behavior and special boundary elements
between adjacent joints, to express nonlinearity of each subregion. The
boundary or joint elements are line elements with zero initial width they
connect the linearly elastic subregions and account for the nonlinearities
in the system.

The stiffness matrices for the elements are derived from the assumption
that concrete with reinforcing steel forms a composite material. Two or-
thogonal reinforcing steel directions are assumed and the composite material
property matrix is formed by using strain compatibility as follows

{c} = [D] {e} (1)

concrete concrete

{c}steel = [D]steel (e} ()

wher. {0} is the stress vector, [D] is the material property matrix, {e} is
the strain vector and

[D]Total = [D]concrete +[D]steel (3)
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The exploded view of a subregion and the placement of the corresponding
joint element is show in Figure 1. The nodesof the joint element are de-
fined by (i,j,k,1) and each node has two displacement components, Au in X~
direction, Av in Y-direction respectively.

The strains in the joint elements (1,j,k,1), shown in Figure 1. are the
nonlinear strains of the subregion (i,j,m,p). The elastic strains are com-
puted from the displacements of the nodes (m,p,k,1l). The joint strain-dis-
placement relations are obtained by subtracting the elastic strains of the
constant stress triangle from the total strains of the subregion.

The stress-strain relationship for the joint element is defined in two
directions namely Onr €n for normal, and og, €g for shear. The material
property matrix relating the stresses to the strains is

Gsl kss kns €s &)

UnJ ksn knn €n

Due to symmetry of material properties, kg, and ko are equal, thus,on-
ly 3 terms of the equation (4) need to be defined. The terms of the compos-
ite material property matrix for reinforced concrete with reinforcing steel
located parallel to X and Y coordinate directions (Figure 1) are derived as

kss = G + EqSin®0.Cos?6 (1,+1y)

knn = Ec*t EBg(l .Cos"8+1ySin“e) (5)
- 3 s ool .3

kns Es(lx.COS 6.Sinb 1chSGSln 8)

where E,, Eg and G are elastic modulus of concrete and steel, and shear mod-
ulus of concrete respectively, lx and 1l,, are the ratio of steel area to the
unit concrete area placed parallel to X and Y directions respectively. For
a detailed discussion of the stiffness matrix of this joint element see
Reference (1).

The initial global stiffness matrix is formed in two matrices using
virgin material properties. The first matrix contains the stiffness con-
tribution of the constant stress triangular elements and the second matrix
contains the stiffness contributed by joint elements. The stiffness of the
joint element is derived for incremental displacements between the nodes of
the upper and the lower subregions.

The triangular elements are kept linearly elastic throughout the load-
ing, thus, the matrix of triangular elements is generated only once. The
joint element stiffnesses are regenerated at every loading step to follow
the nonlinear behavior. The strains of the joint elements are evaluated
from the relative displacement between the nodes. The shearing and the nor-
mal stresses are computed using the appropriate hyteresis laws. The nodal
forces on the joint element are calculated from the element stresses and the
residual forces are redistributed to the system during the next incremental
loading step. An iterative approach to redistribute the residual forces is
possible if, on the same loading step a zero value is assigned for the next
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load increment.
MATERIAL MODELS

The material models developed are based on extensive experimental work
by earlier investigators. (3,4,5,6). The material properties defined for
the analytical procedure are: tangent modulus of concrete (Ec), shear mod-
ulus of concrete (G), and the elastic modulus of steel (Eg) . The models
derived to define these parameters are for normal stress behavior of con-
crete, for shear transmission across cracked concrete, and for reinforcing
steel both before and after crushing of concrete.

The model developed to approximate the cyclic behavior of concrete
under normal stresses is shown in Figure 2. The envelope curve is de-~
scribed by Hoegnestad's parabola from zero to ultimate strain and by a
straight line from ultimate to crushing strain. The terminology for the
definition of the loading and unloading curves (plastic strain ratio, sta-
bility limit and common point) are adopted from Reference (3).

Unloading starts from the envelope when the strains start decreasing
while the concrete is under compression. The unloading curve is construct-
ed by two linear segments. The initial slope of the unloading curve, AB in
Figure 3(a), is taken equal to the initial elastic stiffness of concrete
.012 £l/ey (N/mmz). Before constructing the second branch of the unload-
ing curve, BC in Figure 3(a), the first branch of the reloading curve, DE
in Figure 3(a) is defined. The plastic strain ratio, point D in Figure
3(a), is computed from the formula:

€n € €

e e
— =0,145— +0.130 — (6)
Eeu €cu €cu

where, e, and g, are the plastic and envelope strains and €, is the strain
in concrete at ultimate stress.

Point E in Figure 3(a) is defined as the stability limit. The equa-
tions defining the locations of the stability limit are adopted from Ref-
erence (3) with a change in the coefficients so that they are valid for the
envelope curve used in this study. Points D and E define the first branch
of the reloading curve DE. The second branch of the reloading curve, BC,
is constructed parallel to DE. It is a straight line between the stability
limit and the envelope curve at a point where the envelope strain is 10%
largexr than the pervious unloading envelope strain.

If a full unloading cycle from the envelope to zero strain is not
achieved, different paths for unloading and reloading curves are defined.
If the stresses are cycled between zero and the stability limit the unload-
ing curve follows branch DE and there is no energy dissipation. Cycles of
maximum stress between the stability limit and the common point dissipate
energy but do not create additional permanent strain (Figure 3(a)). If the
maximum stress reaches a point above the common point and unloading starts
prior to reaching the envelope curve, a projection of that unloading point
onto the envelope, A" in Figure 3(b), is used to compute the new plastic
strain. In the case where reloading starts prior to total release of
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stress, the reloading curve follows the thh ¢ p'E'F 2'in Figure 3(c). The
R
point D’is located such that CD/CD: BC/BC.

For cycles between strain limits of O.4e., to l.6e., the analytical
model results match well with the experiment, but for unloading strain less
than 0.4e., the model dissipates less energy and for unloading strains high-
er than 1.6e., dissipates more energy than the experimental results.

The hysteretic model representing the shear transfer across a crack is
described by four linear branches (Figure 4). The initial slip observed in
experiments (4) is defined by a low stiffness region branch 1. With in-
creasing slip the material gains stiffness as branch 2 is reached. Unload-
ing follows branch 3 until zero stress and the slip axis is defined to be
the fourth branch. The unloading curve, branch 4, follows the zero stress
axis until zero strain is reached then the element starts to gain stiffness
in the reverse direction. The turning point, where the stiffness begins to
increase, is taken as a function of the crack width. The increase in crack
width during a cycle is handled by defining a new hysteresis for that crack
width. If there is a decrease in crack width the hysteresis relationship is
assumed to follow the path generated by the previous larger crack width.

The cracks start to close when the loads on the system are reduced.
After a crack closes the full shear stiffness transmission capacity of con-
crete is not regained, it is assumed to be proportional to the normal stress
on the closed crack. The initial stiffness for the closed crack case is
taken equal to the loading branch D (Figure 4) to satisfy the compatibility
of shear stiffness during transition.

A simple bilinear model is assumed to represent the stress-strain hys-
teresis of reinforcing steel. Strain reversals are assumed to have a slope
defined by the initial elastic modulus. The strain hardening branches en-
velope the loading unloading segments. Initial elastic modulus, yield
stress, strain hardening slope and the rapture strain are used to construct
the hysteretic relationship for steel. In the tensile directions the rein-
forcing steel follows the bilinear hysterisis although the concrete might
crack. The compressive part of the hysterisis can only be achieved when
the steel is supported by concrete around it. When the concrete crushes
under compression and the steel has not ruptured, a new hysteresis relation
is defined, which allows the reinforcing steel to buckle in compression
(Figure 5).

EXAMPLES

To demonstrate the usefulness of the proposed analytical procedure two
selected experiments (monotonically loaded and cyclically loaded) on slender
shear walls are analyzed and compared with experimental data (7,8).

To model the shear wall for analysis, the dimensions and the finite
element mesh were defined first. The damage to the experimental walls were
concentrated within a small distance from the base when compared with the
overall height of the wall (which is the case in most slendexr shear walls).
The monotonically loaded model had a height of 270cm, depth of 190cm, and
thickness of 7.5 cm. The corresponding dimensions for the cyclically loaded
model were 225cm, 190cm and 10cm respectively. Comparison of the experi-
mental and analytical models is shown in Figure 6.
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Horizontal reinforcement consisted of 3% of the gross concrete area
evenly distributed along the depth and the height of the walls. A compar-
ison of the analytical moment-curvature and experimental moment curvature
for the monotonically loaded model is shown in Figure 7. The analytical
curvature was computed in a manner similar to the experimental curvature,
but over a 9cm gage. length. This length was based upon the location of the
joint elements in the analytical model. There is good agreement between the
experimental and analytical results as seen in Fig. 7.

The cyclically loaded specimen was designed in accordance with the ACI
318-71 code. The vertical reinforcement was concentrated within the outside
tenths of the width of the wall. The nominal web reinforcement was 0.25% of
the gross concrete area. The shear reinforcement was 0.19% on the outside
tenths of the width and 0.16% on the web. The specimen was loaded like a
vertical cantilever with concentrated forces at the top through a slab. The
loads were alternated for 30 cycles. The first ten cycles were all below
the yield reflection with corxresponding forces between 35kN and 67kN. The
joint elements were placed along expected crack locations and maximum
stress directions. The model had 95 subregions with joint elements. It
included 28 independent and 210 incremental displacement components. Appli-
cation of the first nine cycles of load to the model did not produce any
significant amount of inelastic response even though some loss in stiffness
was observed. Because of computation cost it was considered to be imprac-
tical to reload the analytical model for the first nine cycles. To have a
basis of comparison in the cyclic loading example, the concrete properties
were changed to represent the effects of the first nine cycles of loading.
Although this will not be directly valid for comparing the load displace-
ment results, it was important to f£ind out if the analytical model was ca-
pable to represent the general characteristics of a cyclically loaded rein-
forced concrete shear wall.

The comparison of the analytical and experimental moment curveturve
results are shown in Figure 8. The analytical curvature is computed by
dividing the rotation of the section 9.3cm from the base by the distance
to the base 9.3cm. The experimental curvature was measured over a 7.6cm gage
near the base. During the analytical study of the cyclic behavior of the
wall 64 loading increments were applied and iterations at 20 load levels
were performed. The maximum number of iterations per load level was limit-
ed to 5. This number of iterations was sufficient to decay the residual
forces to a tenth of the applied maximum nodal load in almost all cases
considered.

In conclusion the proposedmodel gave exceptionally good corrolation
with monotonic test results. Although a similar claim cannot be made for
the cyclic loading experiment, the overall moment-curvature behavior of the
analytical model showed typical reinforced concrete shear wall character-
istic behavior. Futher work is being conducted at present to imprxdve the
mathematical model and remedy this deficiency.
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