MATHEMATICAL MODELLING OF HYSTERESIS LOOPS
FOR REINFORCED CONCRETE COLUMNS

by

Shinsuke NAKATAI, Terry SPROULII, Joseph PENZIENIII

SUMMARY

The objective of this research is to estimate lateral force-deflection
curves for reinforced concrete columns subjected to cyclic transverse loads
and constant axial loads. These curves are determined in relation to the
column parameters such as shear-span ratio, longitudinal and horizontal rein-
forcement, and axial force. '
The test data of columns for this research were obtained from 104 specimens.
Summary equations are developed by statistical methods. The hysteresis ~
loops generated from the empirical equations are in good agreement with the
test data.

1. INTRODUCTION

Up to now empirical wxpressions for only a few types of strength and the
stiffness at bending yield for unidirectional loadin§ have been developed as
mathematical models based on member parameters.

Recently, digital test data became available for lateral load deflection
relationships for short columns. These had been developed systematically in
Japan. (18) This digital information is used in the following to predict the
shape of hysteresis loops by statistical procedures.

2. TEST DATA

Many structures with short columns have suffered serious damage in recent
earthquakes in many parts of the world. In 1972 a large five-year test project
was started in Japan to establish new earthquake resistant design methods for
such structures. In that project, test data were gathered from about 300
columns subjected to cyclic transverse loads under constant axial loads.

Short columns have been adopted in this program with shear span ratios
of 1.0, 1.5, 2.0, 2.5 and 3.0 taken as standard. In this program, the design
of shear reinforcement ratio, Py, is based on Arakawa' s(13 ?formula in whigh
the mean shear stress at flexural yield strength is used. The shape of the
hoops is mainly square with 135° hooks. ‘

Fig.l shows the typical specimen details for all the tests, the scal
the croes section, and the covering and anchoring of the main reinforcem
The test specimen is subjected to antisymmetric moment and constant axial
without the top and bottom of the colummn rotating. Fig.2 shows the syst b4
cyclic loading controlled by the deflection of the top relative to the bottom
of the column. Each amplitude is based on the deflection, 8y, at flexural
yield, which is obtained from a loading test for each specimen. Fig.3 shows
crack patterns developing during the test procedure. The typical failure
modes that were observed are as follows:
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1) Shear failure prior to flexural yielding

2) Bond failure prior to flexural yielding

3) Shear failure after flexural yielding

4) Bond failure after flexural yielding

5) Steel bucking after flexural yielding

6) Compressive failure of concrete after flexural yielding.

The test specimens were mainly selected from the failure category 3), 4),
and 5). The number of specimens suitable for the statistical procedure was
104. The shear span ratio, a/d, was either 1.0, 1.5, 2.0, 2.5 or 3.0, and
the majority of the specimens had a/d = 2.0.

The columns were subjected to constant axial stress, P/bd, (ranging from
-21 kg/em? to 70 kg/cmz) during the loading. The compressive strength fc'
of the concrete used in these specimens ranges from 153 kg/cm? to 453 kg/cmz.
The longitudinal tensile reinforcement ratio, Py, is the same as the compressive
reinforcement ratio in the cross-section of each specimen, and their values
are mainly 0.4 percent, 0.6 percent, and 0.95 percent. The value of the shear
reinforcement ratio is distributed between 0.09 percent and 2.44 percent.
None of the specimens failed in shear before fléxural yield.

From the enlarged graphs of the hysteresis loops, the first, the third,
and tenth cycles at 18y, 28y, 38y and 48y were reduced to digitized form.

The lateral force-deflection data of each hysteresis loop (more than 40
points in one loop) were replaced by slopes, deflections, and shear forces at
special points of the loop for use in the statistical procedure.

The reduced data set comnsists of 20 points for each specimen in each
cycle as shown in Fig.4. Points 1 to 10 are in the region of positive load-
ing, and points 11 to 20 are in the region of negative loading. Points 1 to
5 and 11 to 15 are the slopes of the curve (in ton/mm). Deflections 6 and
16 are the maximun deflections, and deflections 9 and 19 are the remaining
deflections when the load is zero. Shear forces 8 and 18 are the loads when
the loop crosses the load axis; shear forces 7 and 17 are the loads at maximum
deflection.

Point 10 is the area of the loop on the positive load side, and point 20
is the corresponding area on the negative side. After checking data at load-
ing and unloading in each of the regions defined above, the set 21 to 30 was
computed as shown in Fig.4. Points 21 to 25 are average dimensionless
stiffness ratios based on the "peak to peak" stiffness, 27/26. In this way
about eighty digital figures (40 points) in one hysteresis loop were reduced
to ten digital data.

3. EMPIRICAL EQUATIONS OF HYSTERESIS LOOPS

3.1 OQutline of Estimated Hysteresis Loops In this section, the authors are
searching for empirical equations D1, D2, D3, ... D9 which are developed from
the test data 21, 22, 23, ... 29 by statistical processes.(20)The skeleton
curve is defined as shown in Fig.5. The shear force Qy, the deflection &y (D6)
at flexural yield and the envelope curve after flexural yielding are obtained
experimentally as estimated equations. The curve from the origin to the yield
point is assumed to be parabolic. This curve opens downwards and the maximum
value is Qy. As a second step, a hysteresis loop is defined in terms of six
elements as shown in Fig.6. The six empirical equations are D1, D2, D3, D5,
D8, and D9, and cubic equations based on the test data are used between each
adjacent pair of elements.

3.2 Skeleton Curve The calculated shear force, Qyc, at flexural yielding,
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which is based on plastic reinforced concrete theory, does not always agree
with the test value, Qyt, especially for short columns. Fig.7 shows the
average values of Qyt/Qyc for each combination of parameters. In the top
diagram, the test specimens are separated into domains according to their
shear span ratio 1.0 and 1.5; 2.0; 2.5 and 3.0. In the second diagram the
three groups are each divided into two domains determined by shear rein-
forcement ratio < 1.2 percent or > 1.2 percent. Similarly, the third diagram
is the distribution of longitudinal reinforcement, and the fourth one is the
distribution of axial stress divided by concrete strength.

Fig.8.a shows the comparison between the experimental values Qyt and
calculated values Qyc used so far. In the next curve, Fig.8.b, the calculated
value has been correscted to ade, where o is obtained by assuming a linear
relation among the four test parameters and the method of least squares is
applied to obtain the coefficients.

a = 1.418 - 0.105 a/d ~ 12.49 Pt -7.37 Py - 0.464 P/bdf’c.

Equation 3.1, represented as D7, is obtained from an analysis of the
data distributions in Fig.7.

D7(yield) = 0.80L + (0.623 - 29.07 Pt - 5.623 Py -~ 1.11 P/bdf'c)/(a/d)
..... (3.1)

Then the ordinate of Fig.8.c has been corrected to D7(yield)-Qyc. A compari-
son 6f the three diagrams, Fig.8.a, b and c indicates that Fig.8.c gives the
best estimate for shear force at flexural yielding. Using the graphs of the
average rotational angle, Gy/h, at flexural yielding for each parameter
combination, where h 1s the clear span of the column, we could get following
equation.

D6 = Gyﬁh = 0.005 - 0.00124 a/d + 0.63 Pr - 0.056 Py. (3.2)

Fig.9.a shows the comparison of the experimental results with Eq. (3.2).
Although the accuracy is not satisfactory in this diagram, the error is less
than in Fig.9.b in which a comparison is made between the test results and
an empirical equation developed by Sugano using other test data. Hence Eq.
(3.2) is adopted to estimate §y/h.

The following estimated equation, D7, of the envelope curve and force
reduction ratio by cyclic loads are obtained by the same method of least
squares:

D7 (envelope) = 1.0577 + (a/d - 3.0)(3.777 P¢ - 0.0221 P/bdf'e) a?p ,
..... 3.3

where amp is the dimensionless amplitude, G/GY;GY is calculated for each
specimen from Eq. 3.2.

D7(cycle) = 1.046 - 0.00554 a/d - 0.0345 cycle/(a/d)
+ (Pt - 0.004)(~0.013 + 2.569 P/bdf'c - 5.98 amp) (3.4)

These two equations démonstrate the dependence of some parameters in D7(cycle)

on other parameters.
If an arbitary shear force is needed, it is obtained as follows:

Q = D7(amp) - D7(cycle) - Qyc
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3.3 Hysteresis Loop Using the test data, the element D1 to D9 (Fig.6) used
to characterize.the shape of the hysteresis loop, are now defined. A hys-
teresis loop is defined by pairs of equations. Each pair consists of one
equation for amplitude, and the other for cyclic loading with fixed amplitude.

Applying the same techniques used in Section 3.2, these estimated
equations D1, D2, ... D9 are summarized in Table 1, which also shows the
trend of the parameters with the elements. In each case a pair of equatioms
is used as follows: Using D1 as an example, the first cycle at a given
amplitude would be described by Dl(amp). "All subsequent cycles at that
deflection would be described by Dl(amp).Dl(cycle).

4, ESTIMATED HYSTERESIS LOOPS

The hysteresis loops are drawn using cubic or parablic equations. First,
as shown in Fig.5 the initial curve 0A is a parabelic equation whose maximum
value is at §y. In the cyclic hysteresis loop, as shown in Fig.6, the half
cycle consists of three sections --- RANGE 1, RENGE 2 and RANGE 3; the first
two are cubic polynomials and the third is a parabola. The boundary conditions
for these have already been calculated in Section 3. Some examples of
estimated hysteresis loops (CASE 1, CASE 2,...CASE 4) are shown in Fig.10.
These are compared with the test results. The graphs show that the "estimated
model" agrees reasonably well with the test results.

In these figures, the three loops correspond to the first, third and
tenth . cycles of each amplitude. CASE 1l: small shear span ratio(a/d = 1.0),
small shear reinforcement (Pw = 0.21%); the shape of hysteresis loops obtained
from. test data is that of the hard spring type even for the initial amplitude.
For such a combination of parameters, there is a rapid reduction of shear
force. The predicted hysteresis loops demonstrate these results reasonaly well.
CASES 2 and 3: a/d = 1.5. The different longitudinal reinforcements of these
two cases changes the shapes of the loops. The estimated hysteresis loops
also demonstrate this delicate difference. CASE 4: a/d = 3.0. It shows
that the estimated hysteresis loops agree reasonably well with test data
which shape is stable.

5. CONCLUSIONS AND RECOMMENDATIONS

The proposed method of predicting hysteresis loops for reinforced
concrete columns involves using test data statistically. The estimated
hysteresis loops are obtained by a series of simple, statistical procedures
and agree reasonably well with the test data for the following:

1) Change in shear force for a given amplitude and number of cyclic loads.
2) Shape of the hysteresis loops.
3) Shear force and deflection at bending yield for short columns.

It is important to note, however, that this evaluation is based upon
test data for columns which never failed in shear or bond before flexural
failure. There are no test data for loops in these cases.

For a complete estimation of the load deflection relationship, we recom-—
mend that cyclic loading tests of longer columns (a/d = 3.5, 4.0 and 5.0)
should be developed . systematically.

It should be noted that the estimated equations presented herein are
developed only for this particular set of test data. Further work is needed
in order that these ‘equations may be applied to the more general case of
nonrepetitive cyclic loading.

392



REFERENCES

Ramberg, M., and Osgood, W.R., "Description of Stress-Strain
Curves by Three Parameters,” NACA TH 902, July 1943.

Jennings, P.C., “Response of Yielding Structures to Statistically
Generated Ground Motion,” I1II W.C.E.E., New Zealand, 1965.

Ivan, W.D., “The Distributed-Element Concept of Hysteretic
modeling and its Application to Transient Response Problems,™
IV W.C.E.E., Santiago, Chile, 1969.

Clough, R.W., and Johaston, §.B., “Effect of Stiffness Degradation
on Earthquake Ductility Requirements,” Proceedings of Japan
Earthquake Engineering Symposium, Tokyo, Octobex 1966.

eodi

" ASCE P
Division, Vol. 95, EM2, April 1969.

Liu, lhlh-(hi, "Earthquake Response Statistics of )lonnuu-
CE Journal of

Goel, S.C., "Inelastic Behavior of Multistory Building Frames
Subjocted to Earthquake Motion,” University of Michigan, 1967.

{Theain) .
Shiga, 1‘.. md oqnn. J., "The Experimental Study on the Dynamic
Frames,” IV World
rthg , B=2, pp. 165-176, Santiago,

Cnile, 1”9.

Takeda, T., Sozen, M.A., and uhh-n. .M., "Reinforced Concrete
to Simulated ASCE Vol. 96
(3712), Journal of the Structural Div., Decesbex 1970.

Xent, D.C., "Inelamtic Behavior of Reinforced Concrete Members
with Cyclic loading,” Ph.D. Thesis, Univ. of Canterbury, Chrimt-
church, New Zeoaland, 1969.

otani, S., and Sozen, M.A., "Behavior of Multistory Reinforced
Concrete Prames During Esrthquakes,” Civil Engineering Studies,
Structural Remearch Garies Wo. 192, Univ. of Illinois, Urbana,
Novaember 1972.

Bartero, V.V., “Effects of Generalized l.xctunou on the -ut-
linear Behavior of Reinforced of
the International Conference on Planning and bc-tqn of 'ruu,l
Buildings, IABGE-ASCE, Vol. IIX, pp. 431-45), Lehigh Univ.,
Bethlehem, Pennsylvanis, August 1972,

12. Bertero, V.V., Bresler, B., 4nd Liao,

17, Hirosawa, M.,

T e e 1111 e
b v e J——
| 500 T‘ 500 500

H.H., "Stiffness Degradation
of Reinforced Concrete Members Subjected to Cyclic Flexural
Moments," Report No. EERC 69-12, Univ. of California, Berkeley,
Decenber 1969.

13. Celedi, M., and Penzien, J., “Experimental Investigation into the

Seimmic Behavior of Critical Regions of Reinforced Concrete
Components as Influenced by Moment and Shear," Report No. EERC 73-4,
Univ, of California, Bexkeley, January 1973.

14. Aralay, M.B., and Penzien, J., "The sdu&e Behavior of Critical

Ragions o
Shear and Axial Force,* Report No. EERC ‘75—19, Oniv. of caluomh,
Berkelay, Decembar 1975,

15. wight, J.K., and Sozen, M.A., “Shear Strength Decay in Reinforced

Concrete Colwmns Subjected to Large Deflection Reversals,® Civil
Engineering Studies, Structural Research Sexies Mo. 403, Univ. of
Illinois, Urbana, August 1973.

16. Sugano, S., and Koreishi, I., “An Empirical Bvaluation of .

Inelastic Behavior of Structural Elements in Reinforced Concrete
Frames Subjected to Lateral Porces,“ Proceedings of the Pifth
World Conference on Barthquake Engineering, Vol. X, Rome, 1974.

' Reinforced
Colusns from Total Collapse (in dlplmn)," Building Research
Institute, Japan, BRI Research Paper, 1972.

18. Bullding Research Institute, Japen, Cosmittee on Reinforced

Concrate Structures in Building, "The Experimental Study on the
Behavior of the Reinforced Concrete Columns under Cyclic loading,”
{(AR-1 Series, AR-2 Saries, LM-2 Series, AP Series, WS Series,

LS Sexies, Pilot Series, FC Series, DCW-1 Series, DCW-2 Series,
SE Series), 1972-1976.

19. The 1971 Aremuotnx‘x Inst. of Japan Standard for Structural

Design of

20. Brownlee, K.A., "Statistical Theory and Methodology in Science and

Engineering,” John Wiley & Sons, Inc,, 1965.

|

35 1250t 35
180

Fig.l Specimen Details

Cycles at 48y
(Pn~Ps)

r.l &S‘J_ssql_ii_i

Py :

By

38¥(PioLi02).

Loadwhen tensile reinforcement

yields at test

Measureddhorlzontal

isplacement at P=Py

Fig.2 Cyclic Loading System

393



@=(D+®)/2.0/(®/®)

@=(0+®)/20/ (@/®)
®=(0+®)/20/(®/®)
@=(D+@)/2.0/ (®/&)
""""""" ®=(0+®)/2.0/(®/8®)

@& =(®+®)
B=(0+®)

®=(®+8)/®

B=(0+8)/®

®=(0+93)
Fig.4 Data Reduction

15
N o
—
AID 015 20 30
w s LV .
*\‘ e
o5
PW
13
e |»
:D b 2 - »
o] [e]® L '-.“0
Q5
PTELMSLMSLMSLMSLMS
AR “ .
\ X e ,HTT

p,&‘ﬁcSMMML&lM. L OSML ML ML ML L MLoML L
Fig.7 Average Value in Each
Parameter Domain

CALCULATION IN TONS

A
Qy T
| D7
-5y KE |
' 0  64(08)
PARABOLIC

'EQUTION

Fig.6 Empirical Hysteresis Loop

24
20
wos/| 2
V€
ol
16 20 24

TEST VALUE IN TONS
Fig.8 a Comparison Between
Calc. Value & Test Value

of Qy



- 24
20
2 A
8 48,
' A Ab
Z 18 ra) ra
3 m
5 12 A L
= FAY
3 A
-
3
8
4
4 8 1”2 16 20 24

TEST VALUE IN TONS

Fig.8 b Comparison Between Calc.

Value qu & test Value

Table 1 Estimated Equations

[}

hlu,:nn.tlgi of gfrﬁnvg nra?ur I vemarks__————————1
0
Pw

ul
: DoWN resn(r_ud by A/D

R

n
z2 £
- ° AAA
A
Z 6 oA A
4
g on o
<12 2
i
5
Q
38
(&)
4

4 8 12 16 20 2%
TEST VALUE IN TONS

Fig. 8 c Comparison Between Calc.

Value D7:Qy & Test Value

16.0

06)

>p
2

CALCULATION  IN_ MM
g

% 9 160
TEST VALUE IN MM
Fig. 9 a Comparison Between

Calc. Value D6 & Test Value GY

1.0 &% )
& A
YR

CALCULATION IN MM
8
[\

80 16.0
TEST VALUE IN MM

Fig. 9 b Comparison Between
Sugano’s Calc. Value & Test Value



110 1.3
-
é a3 w 0.65
(? g
s o g
. = 4t F1 — 2 RN
=/ < v
g / £ -o.65 7
~055 MEASURED
§ L s A |
e T w20 W ¢ w20 30 40
CASE 2
CASE 1 “
.3
- !
& ), u 0.59)
T 075 3 / e
é: Z 2 /
~ - 7 ™ o /
0. <
g 2 . // EST1MafED
-0.65 -
~0.75
§ 1 -1.3
-1 - -3 -2 -1 o 1
Lo -30 -20 -0 0 10 30 40 DEFLECTION IN & 3 *
DEFLECTION (6Y) a7¢ 2 1.5 BT 041 P = 102 o/ma’z 30 g0 s a4
A/D*1.0 PT=0.38 PW=0.21 N/BD=0 FC=190 <
1.3 13 l
0.65
y 0:88 . v
g 8 A~
- ° o E ° EL | 3 E.
= sl 7 v 1 we oy o s g o Fs be
g i y .4 L
Z -0.85 T & =088 MEASURED
1 MEASURED l
-1.3 L 1 1.3
-t -3 -2 -1 [y 1 2 3 4 - = -2 -1 ) 1 2 3 e
CASE 3 CASE 4
1.3 1.3
0.65 o.
w - Z =
£ ;
€ . 5o LA
< H
= ,
2 oes ESTIMATED -é e
H
~1.3 -1.3
-3 2 = o 1 2 3 ) . S —
DEFLECTION IN ‘Y . a/d=3.0 By=0.96 7,=0.60 n/bd=26.3 £2=189
a/8 % 1.5 P =129 » w212 pspa w30 £ =207

Fig. 10 Empirical Hysteresis Loops




