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SYNOPSIS

A method to analyze the effects of Dynamic Cross Interaction on the
dynamic behaviors of embedded structures was presented. The method deals
with two rigid structures problem by applying the three-dimensional wave
propagation theory. By varying embedded depth, distance between structures
and location of structures, many case studies were conducted.

INTRODUCTION

Dynamic behavior of embedded structure is fairly affected by the inter-
action between the side wall of structure and the surface layer. When a
structure is embedded near one structure, radiational waves of one structure
act on the other structure as incident waves. Dynamic characteristics of
these structures become more complex compared to the single structure prob-
lem, because the influence of Dynamic Cross Interaction (DCI) should be
induced. The analytical model consists of two rigid structures of cylindri-
cal shape embedded into the surface layer. The analysis is performed by
application of the three-dimensional ‘wave propagation theory. To simplify
the analysis the vertical displacement of the surface layer was neglected.
The input ground motion Ug-eiw! was applied on the bed rock in x-direction
as shown in Fig. 1.

DISPLACEMENTS OF SURFACE LAYER

The displacements of the surface layer, expressed in the cylindrical
coordinates (é”,d”,z), are as follows;
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where u,v = total displacemeﬁt of surface layer in fvand dDdirection, respec-
tively; u& ,vg? = displacement caused by the radiational waves of Structure-
(3) shown in coordinates (r'V,0%,z), (4=I or 1I); ug , Ve | = values transformed
ol and v{l into coordinates (xfV,6),z); up,v, = displacements caused by shear
wave traveling in z-direction independent of structures. And u% and vg in-
clude unknown integral constants.

., Assuming that the rigid structures are vibrating with the rocking angles
QQIéwt and @%é“" in x and y-direction, respectively, the continuity condi-
tions of displacements between the side walls of structures and the surface
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layer should be considered. The equations of boundary problem for Structure-I
as follows;

d20,60,2) + IHED Bz + uy6P,2) = o6, 2)
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in which u(su O displacements of side wall of Structure-I; R(ll)@(ll values
presented slde wall of Structure-I (aP,6%) in the coordinates (rm)e . Since
(RN e® in Eq. 2 have one to one correspondence to o® Eg. 2 are considered

to be a function of 6Wand z. Similarly, the boundary eguations for Structure-
II are expressed as a function of 8%and z. Solving the equations by expand-
ing ( c)*,v(ém) and (ug)*,vgx‘) in the Fourier series, the integral constants are
obtained as a function of ){),479) and Ug. Substituting these 1ntegral constants

into Eq. 1, the displacements are given by a function of @0) <I>(J and Ug.l
ROCKING MOTIONS OF RIGID STRUCTURES AND DCI FACTORS

The rocking moments in x and y~direction due to the surface layer acting
on the side walls of the structures are obtained by using the above mentioned
integral constants. Assuming that the rigid structures have no sliding a-
gainst the bed rock and the rocking axis in each direction coincides the base
of structure, the equations of rocking motion are derived as follows;

[Tel{e} = —{F1{o} + iL( Se)t{e)ug + {Iulvg (3)

where [Ig], {Iu} = matrix and vector relative to moment of inertia and force of
in ert].a, res ctlvely, wg = lowest natural frequency of surface layer; {¢} =

{¢(l,q>( q> qﬁ)e} vector of rocking angle; [F] = [fik ]4x4 matrix of DCI factors
show frequency properties of reactive moments; {G} = {gl,gg,g3,gh} vector of
DCI factors show frequency properties of forcing moments. For example, f13
shows the dynamic characteristics of reactive moment acting on Structure-I in
x~-direction caused by the rocking motion of Structure~II in x-direction. 1In
the static case, Fig. 2 shows the comparison of DCI factors with Tajimi's
solution?2) that are the factors of the single structure problem ( 1/a = o).
In the next, the frequency properties of DCI factors deal with the dimension-
less values which are divided the DCI factors values by f;, value when l/a =
© ,wwg = 0.0.

NUMERIC RESULTS AND CONCLUSION

In this paper, by varying the separation ratio l/a, the embedded ratio
a/H and the location of two structures relative to the input motion direction
< shown in Fig. 1, many numerical calculations were done for identical two
rigid structures. Fig. 3 and 4 show the curve of fjy ,fy45 and g; versus with
1/a and the frequency ratio w/wg when a/H = 1.0, €= 0°. In the case of
a/d = 1.0 and 1/a = 3.0, the curves of [F] and {G}, in which f£;,, £y, and g,
are the cross factors whose values are zero as<® = 0°or 90°, are shown in
Fig. 5 and 6. The dynamic magnification factor MF at the center of gravity
of structure versus with a/H and w/wg are plotted in Fig. 7 when<®= 0®and
wp/wg = 1.5. Where wg denotes the natural frequency of rocking motion of
structure. Fig. 8 shows the curves by plotting the largest values of MF ver-
sus with 1l/a and wp/wg when the value of MF has a maximum near W = wg (in the
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case of a/H = 1.0 as shown in Fig. 7), while Fig. 9 shows the curves when the
value has a maximum near w = wg (in the case of a/H = 0.25). The curves of
MF versus with < and w/wg are shown in Fig. 10 when a/H = 1.0, 1/a = 3.0 and
wg /wg= 1.5.

From the numeric results the effects of DCI are obtained as follows;

1) when< = 0°, the amplification of the rigid structure increases near w = WR

while decreases w = g in comparison with the single body problem ( l/a =
® ). This tendency becomes more remarkable the more two structures located
near. 2) When «® is not equal to 0° or 90°, the rocking direction of structure
does not agree with the direction of input ground motion ( x-direction ), be-
cause the response components in y-direction are induced. And the y-direction
components become a maximum when ® = 45°.
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