SOIL STRUCTURE INTERACTION RESPONSE OF COMPLEX INDUSTRIAL STRUCTURES

Satyendra P. Gupta and Mani Kant Gupta I

STIMMARY

Equivalent soil springs are used to study the response of structures including the effect of soil structure interaction. Large scatter has been found in the values of equivalent soil spring stiffnesses obtained by different methods. Dynamic response with different earthquake excitations have been studied for complex structures over a range of interest of soil springs.

INTRODUCTION

Structural analysis in preliminary and invariably in final stages of design too, generally assumes that the structure is rigidly founded. This involves an assumption that the foundation and superstructure remains uncoupled during vibrations and are independent of each other's influence. Since soil is deformable the flexibility of foundation should be included in the analysis and its inclusion generally increases the time period of the structure. Industrial structures are invariably being designed as a multistoreyed reinforced concrete building with complex frames. Discontinuities in the floor slabs and columns are special features of these systems and hence mathematical modelling is complicated. In this study the variation in the soil stiffnesses as obtained by field and analytical technique have been examined. The response of complex structures of different dimension under different earthquakes have been presented.

STRUCTURES STUDIED

The structures considered are multistoried reinforced concrete industrial structures having discontinuities in the floors and with complex frames. Three different structures of raft areas 371.38, 1000 and 2940 sqm. with different heights are studied.

EQUIVALENT SOIL SPRING STIFFNESS

Soil structure interaction effect is studied by replacing soil by equivalent translational and rotational springs. Indian Standard Institution (IS:5249-1969) recommends for carrying out free and forced vibration tests on a standard concrete block for determination of coefficient of elastic uniform and nonuniform compression and shear, which inturn are used for computing equivalent soil springs (Gupta and Gupta, 1978). The values of equivalent soil springs shows a scatter on variation of the size of the test concrete block. In this study the structures are assumed to be founded on raft foundation on medium soil and for determination of equivalent soil springs test data on four concrete blocks have been utilized. The values of coefficient of elastic uniform shear as found from four block tests varied from 1.41 to 1.75 kg/cm3. The equivalent soil springs computed by the method Gupta and Gupta (1978) for different raft areas are given in Table 1. Elastic half space theory has also been used for determining the soil springs. In this method determination of shear modulus and Poisson's ratio of the soil is required. The shear modulus can reasonably be estimated by taking into

I Department of Earthquake Engineering, Roorkee University, Roorkee, India.

account the type of soil, density, confining pressure and strain level (Seed 1970). The shear modulus obtained from block test and as calculated by Seed's method were comparable. In this study a value of 3120 t/m² for shear modulus and 0.33 for poisson's ratio have been chosen. Using elastic half space theory Whitman and Richart (1967), Parmelee (1967) and Veletsos and Verbic (1974) have given formulae for determining soil springs. The values of equivalent soil springs calculated by these formulae have also been given in Table 1.

SEISMIC ANALYSIS

The dynamic analysis of the complex structures have been carried out under the assumption that the structure is vibrating as a block in one of the the principal directions with fixity at ground level. Soil structure interaction effect has been included by introducing lateral and rotational soil springs at the base of the structure. "Figs. 1 and 2" shows the mathematical model for structure A for fixed base condition and including soil springs for both the principal directions respectively. "Figs. 3 and 4" shows the model for structure B.

DISCUSSION AND CONCLUSION

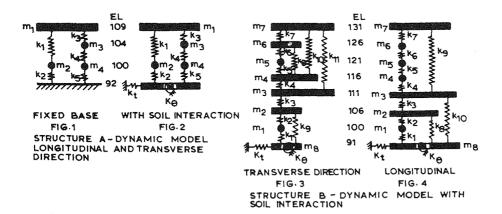
Table 1 shows a wide scatter in spring stiffnesses from different methods. It is observed that the values obtained for equivalent translational as well as rotational springs from block tests are invariably higher than those from elastic half space theory. The difference in the stiffness values have been found in this study to increase with the increase in base area of the structure. Table 2 shows the shear variation at different levels in structure A and Structure B for El Centro and Taft earthquakes for fixed and flexible base conditions. It is seen that when effect of soil structure interaction is included in the analysis, the shear in longitudinal direction for structure A is reduced for both El Centro and Taft excitations. In all other cases the shear has been found to increase when flexibility of foundation is included in the analysis. This indicates that shear value may increase or decrease on inclusion of soil structure interaction effect. This increase is on account of large deformation caused in the structure due to the soil interaction.

REFERENCES

Gupta M.K. and Gupta, Stayendra P. (1978), "Effect of Soil Stiffness as Determined by Block Test on Structural Response", Proc. Cent. Am. Conf. on Earthquake Engg., San Salvador, Central America.

Indian Standard Institution, (IS:5249-1969), "Method of Test for Determination of Insitu Dynamic Properties of Soil", ISI, New Delhi.

Parmelee R.A. (1967), "Building Foundation Interaction Effects", Journal of the Engineering Mech. Divn., ASCE, Vol. 93, EM2.


Seed H.B. and Idriss I.M. (1970), "Soil Moduli and Damping Factors for Dynamic Response Analysis", Report No. EFRC 70-10, Berkeley, California.

Veletsos A.S. and Verbic B. (1974), "Basic Response Functions for Elastic Foundation", Jr. Engg. Mech. Div., ASCE, Vol. 100, EM2.

Whitman R.V. and Richart F.E. Jr., (1967), "Design Procedures for Dynamically Loaded Foundations", Journal of the soil Mech. and Foundation Divn., ASCE, Vol. 93, SM6.

TABLE 1 - EQUIVALENT SOIL SPRING STIFFNESSES

BASE	Constitution of the second		TRANSLATIONAL	ROTATIONAL	STIFFNESS
AREA sqm.			stiffness t/m	Longitudinal tm/rad	Transverse tm/rad
371.38	Field	Block 1 Block 2 Block 3 Block 4	523650 571900 605350 649920	14000000 15300000 16210000 17390000	22682000 24800000 26261000 28167000
	Elastic Half Space	Whitman Parmelee Veletsos	159931 166771 162464	37528224 26410162 26410162	16040289 6747135 6747135
1000	Field	Block 1 Block 2 Block 3 Block 4	1410000 1540000 1630000 1750000	1016374000 1110083000 1174958000 1261458000	162619000 177613000 187993000 201833000
	Elastic Half Space	Whitman Parmelee Veletsos	246697 273708 266639	162980000 145060000 145060000	65194028 36718519 36718519
2940	Field	Block 1 Block 2 Block 3 Block 4	4145400 4527600 4792200 5145000	5856759300 6396744200 6770579900 7269027500	2108433300 2302827900 2437408700 2616849900
	Elastic Half Space	Whitman Parmelee Veletsos	440997 469323 457201	575010000 434990000 434990000	345000000 202190000 202190000

TABLE 2 - COMPARISON OF SHEAR (IN TONNES) AT VARIOUS LEVELS								
Elevation	Direction	Fixed Base El Centro	Condition Taft	Soil Interaction ition El Centro	on Cond- Taft			
		STRUCTURE A						
104 -10 9	Longitudinal	1742	186	289	32			
100 104		1513	184	305	33			
Base		2102	226	632	70			
104 -1 09	Transverse	3326	216	4068	701			
100 - 104		3380	220	4068	701			
Base		4921	320	5686	980			
		STRUCTURE B						
126-131	Longitudinal	1192	205	795	145			
121-126		2126	365	1473	268			
116-121		2923	502	2364	430			
111-116		3974	681	3894	708			
106-111		6127	1051	6899	1255			
100-106		7335	1258	8556	1559			
Base		8265	1418	9705	1766			
126-131	Transverse	1576	272	1602	276			
121-126		2614	468	2745	478			
116-121		3381	601	3019	529			
111-116		4476	783	4656	808			
106-111		6341	1112	6818	1180			
100-106		7415	1279	8005	1385			
Base		8203	1433	8901	1540			