PREDICTING THE EARTHQUAKE RESPONSE OF RESILIENTLY
MOUNTED EQUIPMENT WITH MOTION LIMITING CONSTRAINTS

W. D. IwanI
SYNOPSIS

A method is presented whereby the response spectrum may be used to
predict the response of an isolation system with nonlinear motion limifing
constraints. The results of the approximate method are compared with the
results obtained from direct numerical integration. Observations are
made on the role of various system parameters in determining the
response.

INTRODUCTION

Mechanical equipment used in building structures is often mounted on
a resiliently supported base so as to minimize the transmission of mechan-
ical vibration into the structure. If unconstrained, such equipment isola -
tion systems will normally undergo very large relative displacements
during a strong earthquake with the likelihood of broken connections, loss
of isolation or other forms of failure. In order to minimize the displace-
ment of such systems, motion limiting devices are frequently installed
-‘between the isolator base and the structure. The transient response of
this type of nonlinear system cannot generally be analyzed except by means
of numerical integration techniques which are costly to apply. Further-
more, the earthquake input information supplied to the isolation system
designer is often in the form of design base or floor level response spectra,
making the application of numerical integration techniques even more
difficult.

This paper presents an approximate analytic technique whereby the
response spectrum may be used to calculate the response of equipment
isolation systems with motion limiting constraints. This is accomplished
by defining of a set of ''equivalent'' linear support stiffnesses and equating
the maximum stored energy of the linearized system to that of the actual
system.

METHOD OF ANALYSIS

Consider the single-degree-of-freedom constrained isolation system
shown in Fig. 1. For purposes of analysis, the equipment being isolated is
assumed to be much stiffer than the isolation system. Hence, m is taken
to be the total system mass. For small amplitudes of oscillation the sup-
ports have a stiffness k; which is normally low. When the system under-
goes a relative displacement |x| > 6 in either direction, it encounters a
motion limiting constraint whose stiffness is k;. In most practical appli-
cations the ratio x = k;/k, will be substantially greater than unity. In
addition to the spring elements shown it is assumed that there is a viscous
support damping with coefficient c(x) which is a function of the displace-
ment. Normally, c(x) will increase as the support stiffness increases. It
is assumed that the base of the system is excited by a time varying
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acceleration a(t) with peak acceleration ajp,,4. The differential equation
describing the motion of the system will be

mxX + c(x)x + f(x) = maft) . (1)
Following the equivalent linearization approach [1], it is assumed that
x = A(t) cos [wt - ot)] = Aft) cos 6(t) ' @)

where A(t) and ¢(t) are random functions which vary slowly compared to
the effective frequency of the system. This assumption can be justified
mathematically for systems with small nonlineéarity but has been found to
be useful even for systems with moderately large nonlinearity. With the
assumptions of eqn. (2), a first-order approximation to the solution of
eqn. (1) may be obtained by replacing the nonlinear restoring force f(x) by
a response dependent effective linear stiffness defined by

ket = E[A%k(A)1/E[A%) (3)

where E[ -] denotes the expected value and Q(A) is the effective linear
stiffness for harmonic excitation. The stiffness k(A) is defined as

2m
ka) = (1/TrA)J £(A cos 0) cos 6d6 . (4)
(o]

In order to evaluate the expression on the right hand side of eqn. (3), the
probability density function p(A) for the envelope variable A(t) must be
specified. For the stationary random response problem it is customary to
assume that both the excitation and the response are Gaussian distributed.
Then, for a lightly damped narrow-band process, the envelope will have a
Rayleigh distribution. For a transient earthquake excitation there is
presently no good theoretical basis for the definition of p(A). However, it
is clear that p(A) must be zero for all A greater than the maximum
response Xp,x- In the absence of any data to the contrary it will there-
fore be assumed that p(A) has the particularly simple form

p(A) = I/XInax H OS ASxmax (5)
= 0 ; A>Xpoay

Using eqn. (5) the effective stiffness k ¢r as defined by eqn. (3) becomes
3 Xmax ~
kegr = Blx) [ A%k(a)da 6)
: )

For the particular system under consideration, evaluation of the integrals
in eqns. (4) and (6) yields

Kege = k{1l + (2n/m)[cos™(6/xmax) - 2(8/ZmaxV 1 - (6/%max)

+ (8/2max o (Kmax/® +V Emax/8 P -1 )1} 5 Xmax= (7)

The effective stiffness kggs defines an effective frequency and period of
oscillation for the nonlinear system, 0. ¢r and Togr = 2/Wogr Where
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1
Weff = (keff/m)% = Wo(keff/kl)% H wo = (ka/m)? (8)

It is also convenient to define an effective damping factor {eff such that

Cege = ™in ) (9)

2mw
X< Xpax eff

The (eff so defined will give a conservative measure of the actual damping
in the system. Having defined the effective frequency and damping of the
nonlinear system, egn. (1) may be replaced by its effective linear analog

X 4+ 2§ pf WapfX + Wopex = aft) . (10)
eff Yeff eff v

Due to the strong clipping action associated with the constraint non-
linearity, the maximum displacement of the effective linear system will not
be an accurate indicator of the maximum displacement of the actual system.
However, since the constraint has only a secondary influence on the energy
dissipation of the system it might be assumed that the maximum energy
absorbed by the nonlinear and effective linear systems is approximately the
same. The maximum potential energy of the effective linear system will be

PEmax = _Zn}. Psvz(Teff’ Ceff) (11)

where PSV(Teff, (eff) denotes the pseudovelocity spectrum value associated
with the effective linear system (10). The maximum potential energy of the
constrained system will be given by

2
PEmax = kXmax/2 ; Xmax < 6

kixZnax/2 + uki(xpay - 6F/2 5 Xpax > 8 (12)

Equating the expressions in egns. (11) and (12) gives the maximum response
displacement x5« as

Xax = PSV(2m/wo, Ceff)/Wo 5 XmaxS 8
L1
= {w8 + [(n+ 1)PSV3(Tetf, Ceff)/wd -#n6%12}/ (0 +1) 5 xmax>8  (13)

Eqgn. (13) may be used to predict the maximum response of the constrained
system given the linear response spectrum of the excitation. The approxi-
mate method presented here may be extended to systems with more
degrees-of-freedom and a number of nonlinear motion limiting constraints
by means of modal analysis.

VERIFICATION OF THE METHOD

As an indication of the accuracy of the proposed method of analysis,
the results of the approximate analysis may be compared with results of
‘direct numerical integration of the equation of motion. This comparison
can be made by calculating the actual value of x5y by numerical integra-
tion and then determining the velocity response spectrum value PSV which
would be required to give this maximum response according to eqn. (13).
The value of PSV so determined may then be compared with the actual
velocity response spectrum value at the period Tegs- The difference in the
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two spectrum values will be a measure of the error in the approximate
analysis. ,

Figure 2 shows the results obtained for the velocity response spectrum
values PSV(Teff, Coff) 2long with the linear velocity response spectrum for
the El Centro 1940 earthquake, N-S component. The small amplitude
periods considered are 0.25, 0.5 and 1.0 sec and the stiffness ratios are
# = 10 and 50. The gap spacing & has been varied so as to give a range of
maximum normalized displacement xm,x/8 from slightly greater than 1 to
over 5. For all cases considered the damping coefficient c(x) has been
taken to be proportional to the square root of the instantaneous stiffness
such that {eff = 2%.

It is seen from Fig. 2 that the PSV values required to give the exact
maximum response amplitude (the data points) cluster fairly closely about
the values which would have been used as input for the approximate analy-
sis. The difference between the exact and approximate analysis values is,
in fact, comparable to the local variations in the response spectrum due to
small shifts in period. These local variations may be minimized by
defining a smoothed upper bound and lower bound spectrum as indicated in
Fig. 2. Except for the longest period cases, it is seen that the "exact'’
solution values generally fall between these two spectrum limits. In only a
few cases does the exact value lie above the upper bound spectrum. Hence,
the approximate analysis is generally conservative if based on the upper
bound spectrum.

A more detailed comparison of the exact and approximate analysis
results is given in Table I for a sample of eight different systems. The
gap spacing has been selected so as to give maximum displacement ratios
in the range of 1.5 to 3. 0 where the effect of the nonlinearity is most pro-
nounced. In all cases, use of the upper bound spectrum gives a conserva-
tive estimate of both the maximum displacement and the maximum accele-
ration or force. In five of the eight cases, the exact result lies between
the upper and lower bound obtained by the approximate analysis. In only
two cases is the approximate analysis clearly overly conservative. Both
occur for a stiffness ratiox = 10 and for maximum displacement ratios of
the order of 1. 6. Based on the results of Fig. 2 and Table I it is concluded
that the approximate analysis is capable of providing maximum response
displacement and acceleration estimates which are of sufficient accuracy
to be useful in engineering applications.

RESPONSE OF A SIMPLE SYSTEM

In order to determine the response of a nonlinear isolation system by
the method presented herein, it is first necessary to specify the amplitude
and shape of the excitation response spectrum. This might be a ground
acceleration spectrum or the spectrum at a particular location in a building
structure. For systems attached at ground level, the excitation response
spectrum may be specified as an existing earthquake spectrum, an average
of several existing spectra or one of the available design spectra. A com-
monly used design spectrum is that given by Nuclear Regulatory Guide 1. 60
[2]. Using this spectrum it is possible to make certain general observa-
tions about the influence of various system parameters on the response of a
one-dimensional motion limited isolation system. This proves a basis for
establishing design guidelines for such systems. The 2% damped horizontal
spectrum is used in all cases presented here.
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Figure 3 gives the maximum response ratio, Xmax/SD, as a _fu.nction of
the gap spacing ratio, § /SD, for four different combinations of stiffness
ratio and small amplitude nominal frequency. SD is the value of the spec-
tral displacement at the nominal frequency. The curves for #» = 20 would
lie roughly half way between the curves for #» = 10 and » = 50. It will be
noted that the maximum response ratio is a monotonically increasing func-
tion of the gap spacing ratio but a decreasing function of x. Hence, lower
displacements are obtained by decreasing § and increasing #» as anticipated.

In Fig. 4 the peak acceleration ratio, X5« /amax, i given as a func-
tion of the gap spacing ratio for the same combinations of stiffness ratio
and nominal frequency. The maximum acceleration is important in the
design of equipment which is attached to the isolation system. In many
applications this acceleration must be kept below 3g. Unlike the displac-
ment, the acceleration exhibits a peak at values of gap spacing ratio in the
range 0.2 -0. 6. In order to minimize equipment acceleration this peak
should be avoided. This generally means making the gap smaller than the
value for peak acceleration since the displacement increases if the gap is
increased. In practice, the gap should be made as small as possible con-
sistent with the mechanical tolerances involved.

As an example of the application of the results presented herein, con-
sider the design of an isolator system with a nominal frequency of 1 Hz
which is subjected to a 0.5 g earthquake (SD = 23, 8 cm). Let the maximum
allowable acceleration be 3 g and let the maximum allowable relative dis-
placement be 3 cn. From Fig. 3 it is seen that the stiffness ratio must be
greater than » = 10. Hence, let # = 50. Then, in order to maintain the
prescribed displacement, the gap spacing ratio must be less than 0. 054.
However, as seen from Fig. 4, this gap ratio is too large to maintain the
prescribed acceleration. Hence, the gap spacing ratio must actually be
made less than 0.029. This corresponds to a gap spacing of 0.69 cm for the
particular example. The resulting maximum displacement would be 2.1 cm.
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Table I
Based on El Centro, 1940, N-§
System Maximum Norm. Displ. Xmax/6 Maximum Acceleration, g
Stiff. Nominal
Ratio, Period | Lower Bd. | Upper Bd. Exact Lower Bd. | Upper Bd. Exact
* {sec) Spectrum | Spectrum | Num. Int. | Spectrum | Spectrum | Num. Int.
10 0.25 1.72 1.91 1.56 1.55 1.92 1.25
10 0.25 2.35 2.70 2,52 .11 1. 37 1.23
10 1.00 1.77 2.07 1.57 1,65 2.22 1.27
10 1.00 2.70 3.08 3.01 1.37 1.67 1.61
50 0.25 1.31 1.38 1.34 2.92 3.60 3.16
50 0.25 1.51 1.59 1.55 1. 90 2.16 2.03
50 1.00 1.36 1.45 1.39 3,35 4.17 3.60
50 1. 00 1.58 1. 69 1.56 2.13 2,52 2,06




