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In this paper, discussed are the elastic-plastic hysteretic behavior
of steel braces which play an important role as the earthquake resistant
elements of steel structures. Experimental and theoretical investigations
on the braces by the authors are briefly introduced in the first half. In
the latter half, idealized post-buckling curve and hysteresis loops of the
brace members are formulated and proposed for the design use, based on the
parametric analysis of the experimental and theoretical results.

INTRODUCTION

The earthquake resistant function of steel structures with a vertical
bracing system, much depends on the hysteretic behavior of braces. It is
essential to obtain the appropriately idealized restoring force character-
istics and hysteretic rules of bracing members which are usefully applicable
to the structural design. The elastic-plastic behaviors of simply supported
steel braces under monotonic and alternately repeated loading were investi-
gated experimentally by the authors in Refs. 1), 2), 3) and theoretically in
Refs. 5), 6), T), 8). The behaviors of braces under more realistic condition,
were reported in Refs. 4), 6), 9). A parametric dats anslysis for the re-
sults of above-mentioned researches was performed to formulate idealized
hysteresis loops for a single brace. The loops for paired braces whose behav-

iors do not interact each other can be obtained by the superposition method.
EXPERIMENTAL STUDIES

A series of experiments was conducted to investigate the fundamental
properties of the elastic-plastic behavior of braces. In the first series,
tested are simply supported bars with square cross section(15x15 mm).
Figure 1 shows an example of load-displacement relationships reported at
the 5th WCEE, in Rome. In the flgures, n and § are the non-dimensional
expressions of the axial force N and the axial displscement A, respectively,
divided by their yield values; Ny and Ay. ny i1s the slenderness parameter
defined as the ratio of Euler load Ny to Ny. Basic characteristics of a
brace were obtained from this experimental study. In the second series of
experiments, wide flange braces(H~50x50x6x6) in a single or double bracing
system were tested under more realistic condition. Main interestings were
framed effects and the effects of local instability of section elements on
the hysteretic behavior. Test set-up and specimen are illustrated in Figs.
2(a) and (b), respectively. Figs. 2(c) and (d) show examples of load-dis-
placement curves. Main informations from the test are as follows: {(a) Hys-
teresis loops under the prescribed displacement amplitude stabilize more
rapidly in the case of strong axis buckling than weak axis buckling. How-
ever, after a few cycles of loading lateral deflection becomes predominant
. gbout a weak axis. (b) The behavior’gf a single brace specimen designed to

buckle about its weak axis in plane &f the frame.is almost the same as that
designed to buckle out of plane of the frame, although the boundary condi-
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tions of them are not the same strictly. (c) The effects of secondar bend-
ing on the behavior of braces due to the existence of another frame ele-
ments are not important. (d) Flange local buckling at both ends and mid-
span initiated by lateral deflection induces the concentration of plastic
deformation and causes fatigue cracks at these portions.

THEORETICAL STUDIES

Two types of theoretical analyses on the behavior of the bar subjected
to repeated axial force were reported at the 5th WCEE, in Rome. Theory (I)
treated a bar as one dimensional continuum based on the elastic-perfectly
plastic theory. Theory (II) was developed on the basis of modified Shanley's
model. The former was extended to investigate the behavior of the bar with
various types of yield conditions and estimate the effects of elastic end
restraints against rotation. The latter was extended to examine the effects
of constraints of end displacement of a brace by the frame elements. From
the analysis, the behavior of the brace rigidly connected to frame elements
with ordinary dimensions could be approximated to that of clamped brace or
that of equivalent simply supported brace with a half length. A numerical
analysis which takes into account of the effects of partial yielding of a
section and extension of yield zone in longitudinal direction using more
realistic stress~strain relationship under cyclic loading was newly done to
trace accurately the experimental load-displacement relationship and to
supplement the lack of the experimental data under random loading process
in the formulation of the loops.

MATHEMATICAL EXPRESSION OF HYSTERESIS LOOPS

The formulation procedure of the mathematical expression of hysteretic
loops is presented here. The formulated loops should be applied to the
brace in the range of slenderness ratio 30150 with rectangular or wide-
flange cross section designed to buckle about its weak axis.

General Description of Hysteresis Loops The hysteresis loops of a single
brace can be characterized to be composed of four stages shown in Fig. 3(a).
Stage A : The bar is almost straight and load capacity is nearly equal to
the yield load in pure tension. Stage B : The portion near the mid-span of
the bar is yielding under combined stress in tension and bending. Stage C :
The portion near the mid-span of the bar is yielding in compression and flex-
ure. Stage D : Elastic unloading range. These properties are idealized
by a pair of mechanism lines and linear elastic range in the model loop, as
shown in Fig. 3(b). It is assumed that any compression or tension mechanism
lines keep the prescribed shapes in whole process of repeated loading, and
can be obtained by the translation of a standard compression or tension me-
chanism line in 8-axis direction, respectively. The slope of the elastic
recovery line is determined from the assumption that 64/8, = 84'/8.' = const.
(see Fig. 3(d)). When the loading direction is reversed at point P on the
tension yield line (Stage A), the point representing the response of a bar
moves toward point O on the elastic recovery line with the slope identical
to the initial one (Stage D). From point 0, the response point moves on the
compression mechanism line (Stage C). Amount of the horizontal movement of
the responce point on the compression mechanism line prescribes the trans-
lation of point P. When the loading direction is reversed at point 1 on the
compression mechanism line the response point moves on the elastic recovery
line toward point 2 from where it moves on the new tension mechanism line,
specified by poin!' P' (Stage B), while point O translates to its new posi-
tion 0'. If the response point passes through point P', it moves on the
tension yield line. On the other hand, if the loading direction is reversed
at point 3 on the tension mechanism line, the response point moves on the
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new compression mechanism line specified by point 0'"' after passing through
the elastic recovery line.

Determination of Compression Mechanism Line The post-buckling behavior
of a simply supported bar with ideal I-section made of elastic-perfectly
plastic material was derived as the following equation in Ref. 7).

§ =n + (1 - n)(ng - n)/(3n) + ng(l - n)?/(6n?)
n is expressed as the following form.

n = l//66/nE + 1 + 2/nE - 8/nE/,/66/nE + 1 + z/nE - 8/nE/J

Based on this equation the compression mechanism line for rectangular cross
section is approximated to n = 1/(a.-8 + b)¥2, Fig. 4(a) shows 1/n2 vs. §
relations obtained from e gents. These relationships are approximated
by straight lines and their slopes and intersections with the ordinate
correspond to a and b, respectively. a and b are determined from Fig. U4(b).

n=1/(a:8 +b)¥2 , a(ng) = (10/ngp-1)/3 20, b(ng) = 4/ng + 0.6 21 (1)

The formulated curves are compared with experimental ones, in Fig. 4(c).

Determination of Tension Mechanism Line The tension mechanism line is
deliberately put in the same form as the compression mechanism line,
n=1/(c-8 + d)¥. Where @ = 1 from the definition that the mechanism lines
should pass through the normalized point (0,1) in Fig. 5(c). As shown in
Fig. 5(a), (1/n?*-1) vs. § relation obtained from experimental tension
mechanism lines are approximated to straight lines which pass through the
origin. Coefficients ¢ and r are determined from Fig. 5(b), as follows.

n=1/(e§+ 1), r=3/2, c=1/(3.1 ng+1.k4) (2)
In Fig. 5(c), Eq. (2) is compared with experimental results.

Translation Rule of Mechanism Lines In Fig. 6(a), plotted are the trans-
lation x of the tension mechanism line under constant displacement amplitude
§, versus the horizontal distance s between the latest characteristic point P
and the load reversal point Q relations (see Fig. 3(c)). From the figure,

it is understood that x-s relations are linear and the slope of the curves

is independent of the displacement amplitude. From above-mentioned con-
sideration, x is approximated to x = X ~ n-s, wheren = O.llB/nE + 0.36 from
Fig. 6(b). ¥ corresponding to the translation in the case of s = 0 is deter-
mined as the function of the plastic displacement amplitude 8y (see Fig.3(d)).

x =1n(z-84 +1) = n-s , ¢ =(3-1/ng)/10 (3)

The compression mechanism lines translate in such a manner that the
condition §,'/8p' = §;/3p is satisfied, in Fig. 3(b)

Elastic Recovery Line Figure T(a) shows 84 vs. 8§, relations (see Fig. 3
(a)) obtained from the experiments. The ratio & = 64/8, is approximated to.
be independent of the displacement amplitude, and is derived from Fig. T(b),

as follows, £ = 0-3“55 +0.28 21 (L)

The formulated loops illustrated in Figs. 8(a) and (b) approximate well
the experimental behaviors shown in Figs. 8(c) and (d), respectively.

MATHEMAT ICAL EXPRESSION OF POST-BUCKLING CURVE UNDER MONOTONIC LOADING

1+m this section, derived is the mathematical expression for the post-
buckling behavior of a brace under compressive axial force. The n vs. § re-
lationship is simplified to the same form as the one in the previous sec-
tion, accompanied by three modification functions g1, 8o and g3.
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= « o . .S + 11/25
n=gre;ey/(a-d+0" ) 21
a' and b' for a brace with ideal I-section are given by the correlation for
theoretical results in Ref. T)

a'(ng) = (1/ng + 6)/(2ng) , (np) =1+ 2/ng
The function gy which estimates the accurate buckling strength is given that
g1 = ney(ng)-{a' np(ng) + '} ¥ (6)

using arbitrarily selected column-curve ncr(nE)' Simple expression of the
Junction function gp is given by

go = (1/g3 - 1/81) g (ng)/§ + 1/gy (7)

The modification function g3 to take into account of the effects of the
shape of cross-section on the post-buckling behavior is given by the follow-
ing equation as the approximation curve for the theoretical results in Refs.
6) and 9) (Fig. 10).

gy = 20-(1 - a)-ng/6 + 0.60 + 0.4 £ 1.5 (8)

Figure 11 shows the formulated post-buckling curves. In Fig. 12, the
formulated curves are compared with the experimental results using the col-
umn curve specified by the AIJ design standard for steel structures.

CONCLUDING REMARKS

(1) Based on a great store of information from experimental and theoretical
works on the elastic-plastic behaviors of steel braces under cyclic loading,
formulated were the accurate mathematical expression of the post-buckling
curves and the hysteresis loops which can be directly applied to the dynamic
analysis or structural design of bracing system.

(2) The formulated loops in which the load capacity was expressed as the func-
tion of displacement were characterized by four basic equations; two mecha-
nism lines and two hysteretic rules, when the slenderness np was settled.
(3) In the case of monotonic loading in compression, more accurate expression
of post-buckling behavior was formulated for braces with various types of
cross section. In this formula, the column curve(ncr-nE relation) which

is appropriately selected as the needs of the case demands, can be adopted.
(4) The hysteresis loops and the post—buckling curves proposed for the single
bracing system, can be easily applied to the design use of the double- or
multi-bracing system using the superposition method.
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DISCUSSION

S.C. Goel (U-s OA')

Would you elaborate on how your mathematical model
accounts for the so-called "Column growth" phenomenon,; i.e-.
the deterioration of tensile and compressive strength of a
single brace under constant amplitude cyclic deformatdon ?

Author's Closure

With regard to the question of Mr. Goel, we wish to
state that in the mathematical model, the deterioration of
load carrying capacity in tension or compression range is
prescribed by the translation x along the defoxmation axis
(abscissa) of the tension or the compression mechanism line,
respectively.

The compression mechanism line is a characteristic
curve for the post—buckling behavior of a brace and the ten-
sion mechanism line is for the post-yielding behavior in the
restretching range after buckling.

The translation x of the tension mechanism line is given
by Eg. (3), using and s, where denotes the deformation
- amplitude on the latest compression mechanism line and s is
a distance between the latest characteristic point P and the
load reversal point Q on the tension mechanism line-.

The coefficients and in BEg. (3) are determined by
the parametric data analysis for experimental results (Fig.6).

On the other hand, the translation of the compression

mechanism line is prescribed by the relation
referring Fig. 3(b).
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