CYCLIC BEHAVIOR OF A RESTRAINED STEEL BRACE UNDER AXTAL LOADING

by Minoru WAKABAYASHIL

, Chiaki MATSUI'! and Tsao MTTANTILI
SINOPSIS In order to clarify the effects of end restraints on the cyclic
behavior of braces, steel bars restrained against rotation at both ends were
tested under alternating axial load, the slenderness ratio and stiffness of
end restraints being varied. It is shown that the approximate analysis pre-
dicts the experimental behavior sufficiently well. It is concluded that
important parameters representing the resistantce of the brace against the
earthquake motion can be estimated by the proposed empirical formulas, when
the effective slenderness ratio of the brace is given.

INTRODUCTION Tt has been well recognized that the hysteretic elastic-
plastic behavior of a braced frame under earthquake motion is significantly
affected by that of braces themselves, and thus it is essential to clarify
the behavior of a brace under repeated tension and compression. Some experi-
mental and theoretical studies have been reported on cyelic behavior of
braces simply supported at both ends[1,2]. In actual steel frames, braces
are rigidly or semi-rigidly connected to frame member, and therefore re-
strained against rotation at both ends rather than simply supported. In ad-
dition, initial crookedness and unavoidable eccentricity of load exist.
Very few studies are found on influence of restraint at bar ends and ec-
centricity of load on the behavior of a brace[3,4].

In order to investigate the cyclic behavior of a restrained brace under
eccentrical axial load, an experiment was carried out using small-sized
specimens elastically restrained at both ends against rotation. Experimental
results were compared with those of analysis based on the differential
equation for the elastic bending of axially loaded member and commonly
adopted yield conditions.

TESTS Test program consists of two sets; twenty one specimens having
square cross section, and eight specimens having H-shape cross section. All
specimens were manufactured by shaping 5SSkl mild steel sheet, details being
shown in Fig.l. Table 1 shows the names of specimens and actual values of the
following parameters involved in the tests; 2/i, e and %/%x, where & denotes
the member length, i the radius of gyration about the strong axis of the
cross section, e the eccentricity of load, and 2x the effective length de-
pending on the end restraints. The value of e was taken equal to zero or
i/20+ %/500. Mechanical properties of steel material used are shown in Table 2.

Figure 2 shows the loading arrangement. End pin supports are the same
as the ones in Ref.l. Restraints against rotation are provided by two springs
located in the distance d from the center of rotation. The loading program
was as shown in Fig. 3. The amplitudes of relative axial displacement were
+0.5, #1.0, *1.5 and +2.0% of the length %,

Some of the relations between N/Ny and AL/% obtained from the tests are
shown by solid lines in Figs. L4(a)-(f), where A% is relative axial displace-
ment, and Ny the yield axial load. Dashed lines in Fig. 4 indicate that the
proper test data could not be obtained due to the rapid decrease of the load
during the virgin compression. For specimens with H-shape cross section
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restrained at both ends. The out-of-plane deflection was observed to be
excessive.

THEORETICAL ANALYSIS The model analysed in this study is a bar of length
2 restrained at both ends by rotational springs of stiffness K and subjected
to axial force N with eccentricity e, as shown in Fig. 5(a). The coordinate
system is taken such that the positive x-axis is along the longitudinal axis
of the bar with the origin at the left hand support, and y coincides with the
principal -axis of the cross section. The bar deflects in the symmetrical
manner about the center, and a free body diagram of half bar is shown in
Fig. 5(b), where ©p and OB denote the slopes of the deflected bar at the
center and the end, respectively, OR and @B the plastic rotations at the
center and the end, respectively, and Og the_rotations of the rigid bar con-
necting the bar with springs. Note that @A-GE and Og=Og- Og. The bar is sub-
Jjected to Met+Ms at the support and Mp at the center, where Me and Ms denote
the moment due to eccentricity of load and the restraining moment by the
spring, respectively. The positive directions of axial force, bending moment,
deflection and end slope are shown in Fig. 5(b).

The following assumptions are employed in the analysis: Sguare of the
slope is negligibly small in comparison with unity; change in the length of
the bar is small in comparison with the original length; the moment-thrust-
curvature relation of the cross section is elastic-perfectly plastic; the
bar must deflect when the absolute value of compression load reaches the
smaller of Euler load or the yield load Ny.

The differential equation governing the deflection y of the bar shown
in Fig. 5(b) is given by
y"-(W+y)/(E1)+(Me+Ms)/ (EI)=0 (1)
where EI denotes the flexural rigidity of the bar, and (') indicates the
derivative with respect to x. The general solution of Eq.(1) is
y=Cjcoshkx+Cy sinhkx+(Me+Ms) /N for N>0 (2a)
y=Cicoskx +Cpsinkx +(Me+Ms)/N for N<O - (2v)
where Ci and Ci are constants of integration, and k2= [N|/EI.

Boundary conditions to determine the value of Ci and Ci are as follows:
At x=0 ; y=0 and at x=%/2 3 Yy=ym (3a.,b)
where ym denotes the deflection at the center of the bar.
When the plastic hinge does not appear at the support, Ms is given by
Ms=-K*0s=-K*(y'| x=0-OR) (%)
where the value of OE is determined from the initial condition of the load-
ing history. When the plastic hinge forms at the support, the member end
moment must satisfy the yield condition, and thus,
Ms=§ *Mpe-Me (5)
where Mpc is the reduced full plastlc moment due to axial thrust, and & is
taken equal to 1 if N>0 and to -1 if N<O. Me is simply given by Me=N-e.

The deflection y finally contains unknowns yp and N. The relation
between yp and N.is obtained from the following conditions When the yield
condition is not satiafied at the center,

7'| =k = 6f = constant. (6)

must be sa%lsfled where the actual value of OE is again given from the
initial condition of the loading history. On the other hand, when the yield
condition is satisfied at the center,
oyt =n0°*
EI-y"| _g §+*Mpe (1)
must be satisfied. Therefore, the value of the one of unknowns ym and N can
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be numerically determined according to the assumed value of the other.

The relative axial displacement A% can be decomposed to four components

[2],

M= Ale+ARg+Alp+Alt (8)
The first two terms in the right hand side of Eq.(8) are given by
Me=N-L/(EA) , Mg= - -;— f'z'(y'.)zd_x (9a,b)

and A%t is due to plastic elongation distributed along the bar axis which
appears only under pure tention. With dots denoting the rates, the relation
o 20/3N  .op
Mp = —go @ (10)

can be derived from the flow rule, where @ is the yield function and e is
the plastic rotation at the plastic hinge. Assuming that the relation by Eq.
(10) is piece-wise linear, the value of A%y is obtained by integrating Eq.
(10) numerically.

Analytical behavior of specimens are shown by dashed lines in Figs. L
(a)-(f). Since the out-of-plane deflection was observed excessively for the
case of restrained bars with H-shape cross section, as stated before, the
analysis of these bars was carried out by assuming that the bar is fixed
at both ends and buckles about the weak axis under centrical loading.

DISCUSSIONS Load-Displacement Curves Owing to end restraints, plastic
hinges form both at the center and ends at different loading stages, which
makes two kinks appear on the load-displacement curves in the region where
the load increases gradually toward the tensile yield load, after it is re-
versed from compression to tention. This can be observed also in the region
after the maximum compressive load is attained. Observe that only one kink
appears for the case of simply supported bar. The analysis well predicts

the experimental behavior.

Effects of Restraints It seems that the cyclic behavior of a brace can
be characterized by the following quantities: Absolute value of compression
load at the minimum axial displacement, NA; maximum tension load, Nt; abso-
lute value of meximum compression load, Ne; area of a loop, AW.

In Figs. 6,7,8 and 9, the values of NA/Ny, Nt/Ny, Ne/Ny and AW/(Nye-L-ey)
are plotted against common arguments of p=fxv€y/(i+m) for various values of
£/%2k, respectively, where €y denotes the yield strain. The values of 2k of H~-
shape specimens(marked % in Figs. 6-9) are computed for bars fixed at both
ends buckling-about weak axis, based on‘the observation in the tests. The
values of Np, Nt, Nc and AW are taken from the fourth loop experimentally
obtained at amplitude AL/2=%0.5%. It can be observed that the relation be-
tween g and u for £/2k=1 may be approximated in the form.

g=—=2 43 (11)

vhere g may be taken equal to NA/Ny, Nt/Ny, Nc/Ny or AW/(Ny-L-ey). The value
of B is first taken equal to 0.5 for Nt/Ny-u relation, and otherwise to O,
by inspection. Four values of A are determined by the least squares from the
data plotted in Figs.6-9. In the similar manner, other sets of A values

are obtained from the data for the amplitude of *#1.0, #1.5 and #2.0%. The
values of A determined in such a way are plotted against arguments of the
amplitude for various cases of g in Fig. 10. And then, the relation between
A and amplitude A%/% are approximate by the least squares as shown by four

3183



different curves in Fig. 10, corresponding to four cases of g. The solid
curves corresponding to &/8k=1 and A%/%=%0.5%, shown in Figs. 6-9, are drawm
using Eq.(11) in view of the value of A approximated in Fig. 10.

It is observed that Np/Ny-u, Nt/Ny-p, Ne/Ny-u and AW/(Nye%-€y)-u re-
lations for the other values of £/2x can be approximated again by hyperbolic
functions of U, similar to Eq.(11). The effects of end restraints are already
considered when to evaluate the value of k. However, as seen in Figs. 6-9
the values of Np, Nt, Né and'AW for 'a:Specimen with end restraints are larger
than those of a simply supported specimen given by Eq.(1l), although both
specimens have an identical value of 2k°/§§/(i'ﬂ). Thus, introducing a mag-
nification factor o to take this fact intc account, the formula

f = ag (12)
is assumed in this study, where f may be taken equal to Np/Ny, Nt/Ny, Ne/Ny
and AW/(Ny+Leey) for £/%x=/2 and /3. The values of a determined by the
least squares from the test data for various values of the displacement
amplitudes are plotted against arguments of 2/2k in Fig. 11 The relation
between o and £/2k can be approximated by a straight line for each case
shown in Fig. 11. Note that magnification factor o is equal to 1 when &/%k=1
and 2(both end fixed), the latter being physically explained by the fact
that tha behavior of the simply supported bar of length £/2 is identical
" to the one of length £ fixed at both ends. The dashed and dash-dotted lines
in Figs. 6~9 are drawn in view of Eq.{(12).based on the approximate linear
relation between o and £/% shown in Fig.(1l).

Effect of Eccentricity and Shapes of Cross Section Specimens RE1200,
RE1201 and RE1202 were tested under the largest eccentricity of load.
Axial load-displacement curves of specimens RE1200 and RE1201 are shown as
solid lines in Figs. 12(a) and (b), respectively, together with those of
RC1200 and RC1201 drawn by dotted lines, which are subjected to centrical
loading. A definite statement about the effect of the eccentricity can not
be drawn from these test data, expect for difference in the maximum com-
pression load attained in the initiate loading. Test results in Figs. 6-9
vary with the shapes of the cross section due to differences in yield
functions and in the effect of strain hardening.

CONCLUSIONS It has been shown from the present experimental study that
the effect of end restraints on the hysteretic behavior of braces is totally
evaluated by the magnification factor a. In order to predict the post-buckl-.
ing hysteretic behavior of a brace involved in actual braces frames, U is
first evaluated from 2k in which the end restraints should be considered.
Then, the value of o is taken from Fig. 11, and the values of factors con-
sidered to characterize the hysteretic behavior, i.e., NA, Nt, Nc and AW,
can be determined from Eqs. (11) and (12).
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DISCUSSION

S.C. Goel (Ué -Ao)

Are the end restraints in experimental and theoretical
models infinitely elastic ?

Author's Closure

We confirm . that the end restraints in experimental and
theoretical models are infinitely elastic.
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