COMPUTED BEHAVIOR OF COUPLED SHEAR WALLS

By
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SYNOPSIS

A procedure using a modified frame method is presented for the non-
linear analysis of coupled shear wall structures subjected to strong earth-
quake motions. The walls and coupling beams are replaced by flexural ele-
ments. Axial flexural and shear rigidities of the wall members are con~-
sidered in the analysis. The coupling beams are taken as individual beams
connected to the walls through a rigid link and rotational springs. The
hysteresis rules used are an adaptation of those presented by Takeda et al
(1970). A linear acceleration method is used for the solution of the equa-
tions of motion.

INTRODUCTION

The use of shear walls is a very popular scheme used in the design of
multi-story buildings to provide resistance to horizontal movement from
wind loads or earthquake motion. This paper outlines a procedure and pre-~
sents some results for the computation of the nonlinear response of shear
wall structures subjected to strong motion earthquakes. The procedure is
intended for use as a research tool for the investigation of the infiuence
that variations in various parameters have on the response of shear wall
systems.

Although there are several variations and configurations of wall sys-
tems in use, the procedure is discussed only in reference to reinforced con-
crete coupled shear walls, two walls with connecting beams. There is a con-
siderable body of existing literature dealing with coupled shear walls. On-
ly a few of these are referenced here. The early study by Beck [1], the re-
port by Jennings [2], and the ACI meeting [3] provide ample introduction to
the pertinent literature.

To predict the actual behavior of a structure due to strong earthquake
motions, the dynamic structural properties in the highly inelastic range
must be taken into consideration. Inelastic properties such as cracking
and crushing of the concrete, and yielding and bond slip of reinforcing
steel complicate the problem. Therefore, idealizations and simplifications
of the mechanical models for the constituent members were considered neces-
sary in the analytical procedure.

For simplification inelastic beam model techniques which have been
used extensively for the response of frame structures [4,5,6,7] are modified
for use on the wall frame system.
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MECHAN ICAL MODEL

The lateral resistance of couwp led shear walls results primarily from
three sources of structural actions; flexural rigidities of the walls and
of the connecting beams and the moment effect of the couple growing out of
the axial rigidity of the two walls. The mechanical model chosen to repre-
sent the coupled shear wall is shown in Fig. 1. The walls and the coupling
beams are replaced by massless line elements having flexural, axial, and
shear rigidities. To follow the current fad and use two dimensional plane
stress elements for the walls was judged less desirable.

The beams are taken as individual beams connected to the walls through
a rigid 1ink and a rotational spring. The rotational <oring takes care of
any beam end rotation which is produced by steel bar elongation and con-
crete compression in the joint core as well as the inelastic flexural and
shear action over the beam length. Such ‘inelastic flexural action is ex-
pected to be localized near the beam ends. The beam itself is considered
to be a flexural member with uniform elastic rigidity along its length.

The shear wall is also considered to act initially as a beam with a
linear variation of strain over the cross section. The wall members are
exposed to a more general moment distribution than are the connecting beams.
Therefore the inelastic flexural behavior in the wall can be expected to
expand along the length of the member rather than be localized.

In order to allow the inelastic action to cover a partial length of a
wall member, those members are divided into several subelements. The de-
gree of subdivision decreases with story height since the major inelastic
action is expected at the base. The internal subelements or degrees of
freedom are condensed out'of the stiffness matrix before the system equa-
tions are written so that only horizontal story movements appear in the
final equations.

FORCE DEFORMATION RELATIONS OF FRAME ELEMENTS

The inelastic force deformation relations of the wall subelements and
the rotational springs of the coupling beams are used as primary curves in
a Takeda based hysteresis loop development for the respective elements.

The properties of the wall subelements are adjusted based on the defor-
_mation levels occurring at the midpoint of each subelement. Each subelement
has flexural, axial, and shear stiffnesses. The shear rigidity is assumed
to remain constant throughout. The flexural rigidity obeys the hysteresis
loop shown in Fig. 2. The moment curvature relation for the subelement is
adjusted to reflect the level of axial force present in the wall. The axi-
al rigidity is determined by the cracking depth and any inelastic condi-

ticns of the steel and concrete.

The moment is assumed to be a function of curvature, ¢, and axial force
n, while the axial force is a function of curvature ¢ and axial strain ¢.

m
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Using these functions the differential form of the force deformation rela-
tions can be written after some manipulation as
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These relations are used in incremental form for the wall subelement stiff-
nesses.

The rotational springs of the coupling beams contain the deformations
that occur within the joint core and any bond slip as well as all localized
inelastic flexural action experienced by the beams. The flexibility matrix
of the coupling beam system can be expressed in the following form {7

n 12 L/ZSD(MA) 0 f(MA) 0
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where the special symbols SD(M) represent the sum of the flexural and shear
deflections of a cantilever beam of unit length and f(M) is the flexibility
resulting from bond slip, etc., in the joint core. The reason the first
matrix is not in the normally recognized form is that part of the elastic
flexibility coefficients of the diagonal elements have been assigned to the
second matrix (that containing the inelastic action) for computational ease.

ANALYTICAL PROCEDURE

These force deformation properties of the elements are used to develop
the applicable equations of motion

(M1 (X3 + [e] {X} + [K] {x} = -[M] {U} (&)

where M is the lumped mass concentrated at each fioor, X, k, and X, are the
relative story displacements, velocities, and accelerations, and U is the
base acceleration. Damping is made up of parts o proportional to mass and
B proportional to stiffness. The stiffness matrix changes during the re~
sponse to reflect the current structural state therefore the B matrix is
likewise changed to keep within reasonable damping values.

The inelastic structural response and failure processes are evaluated
by numerically integrating the equations of motion using the Newmark 8
method based on a linear accelration (8=1/6). Within any one time interval
the properties of the structure are assumed constant. The residual forces
that develop due to structure changes that actually occur within a time
interval are applied to the subsequent time step.
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HYSTERSIS LOOPS

The rules used in this analysis are an adaptation of those presented
by Takeda et al {8]. For the wall subelements the moment curvature rela-
tions of the primary curve are approximated by a trilinear curve that var-
jies with axial force. The resultant loops are shown in Fig. 2. In Eq. 2
the pseudo flexural rigidity aM/Xxp follows Tezkeda. The real flexural rigid-
ity dM/dp is obtained by multiplying 3M/¥p by (1/1-3M/3dn*dn/dm) to account
for axial force. The hysteresis loop for the rotational springs of the
coupling beams start with a trilinearized version of Takeda but modify it
for a pinching action from the compression reinforcement yielding before
the cracks close and a beam strength decay due to changes in shear resist-
ing mechanisms (Fig. 3).

ANALYTICAL RESULTS

The procedure has been applied to the ten-story coupled wall models
tested on the |11inois earthquake simulator [9]. The dimensions of the
model wall are shown in Fig. 1. The weight of .5 kip is placed at each
floor level.

The base motion used is E1 Centro N.S., 1940, with the maximum acceler-
ation of .41 g. The time span of the base motion is compressed by a factor
of 2.5 from the original records. The maximum response values of the struc-
ture are shown in Table 1 along with measured results. The sequence of
failure mechanism development of the structure is presented in Fig. 4.
Within the first second all of the signficant inelastic change of stiffness
has occurred. First cracking of connecting beam appeared starting in the
intermediate level followed by cracking in the lower part of walls. After
these, yielding of some connecting beams began and the cracking of upper
part of wall followed. For this level of motion there was no flexural
yielding of wall.

Some response wave forms of the structure obtained by this analysis
are shown in Fig. 5.

The top deflection and base overturning moment curve from a static
analysis with the first mode load distribution is presented in Fig. 6 along
with a comparison with the measured values. |In this figure also the se-
quences of cracking and yielding of each element are shown. The top de-
flection and base overturning moment curves for a cyclic static loading are
shown in Fig. 7 where the effects of nonlinear axial force and decay of
beam strength can be seen.

SUMMARY

Inelastic action of the connecting beam plays a major role in control-
ing the structure's response. The pinching effect of- the connecting beam:
produced a larger displacement response than was the case without pinching.
The decay of the connecting beam strength alongated the period of the re-
sponse wave forms. Effect of nonlinear axial behavior on the whole struc-
ture increased the acceleration response.
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TABLE 1

Maximum Response Values of Ten=-story Coupled Shear Wall

Calculated 2,Nonlinear
Story Measured Calculated 2 Axial Force Effect

Acceleration(G) 10 1.66 1.43 1.70
Shear (kip) 1 2.54 3.06 3.02
Overturning Moment 1 151.58 153.0 152.5

(kip-in)

Displacement (in) 10 1.16 1.10 1.00
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