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SYNOPSIS

Presented is a mathematical model for predicting the force-deformation
characteristics of reinforced concrete flexural members under inelastic cy-
clic conditions [1].

INTRODUCTION

Considering a reinforced concrete frame, the established philosophy of
earthquake resistant design necessitates localized inelastic deformations
occurring at certain overstressed regions designated as critical regions.
Four series of tests have been conducted at the University of California,
Berkeley [1,2,3,4] to study the flexural hysteretic behavior of critical
regions under various combinations of internal force components contro._ing
their behavior. The results of the series of tests reported in reference [1]
in particular, permit the formulation of a mathematical model. The geometry
and reinforcing details of a typical test specimen of this series is shown
in Fig. 1.

INELASTIC HYSTERETIC BEHAVIOR

To formulate an appropriate mathematical model for reinforced concrete
members subjected to cyclic inelastic deformations under combined moment,
shear, and axial force, the lateral force-displacement behavior must be
modelled realistically; i.e. one must be able to obtain the lateral force time
history corresponding to a controlled lateral displacement time history.

Suppose for example, the lateral displacement time history of a member
is that function shown in Fig. 2.a. The corresponding lateral force-displace-
ment relation will be very similar to that shown by the solid line in Fig. 3.
Knowing these two relations, the lateral force time history can be obtained
as shown in Fig. 2.b.

In modelling the force-displacement relation of a member under constant
axial load, one should first establish the so called "skeleton" curve. This
curve is defined as the lateral force-displacement relation under separace
but independent positive and negative monotonically increasing lateral dis-
placements. Referring to Fig, 3, if the member under constant axial load is
initially subjected to a positive monotonically increasing lateral displace-
ment, the lateral load will increase "elastically" to point M, remain at
essentially a constant value F, under yielding conditions to point Q, and
then will drop off along line 55 showing a decrease in strength with increas-
ing displacement beyond GN. This decrease is due primarily to crushing and
spalling of the concrete cover on the compression sides of the member in the
critical region. If instead the member under the same axial load had initial-
ly been subjected to a negative monotonically increasing lateral displacement,
the lateral load would change along curve OM'Q' and then drop off with further
increases in lateral displacement along line Q'S'. The force-displacement
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relations under these two monotonic conditions combine to form the basic
skeleton curve S'Q'M'OMQS.

Let us now examine in more detail the force—displacement'relation shown
in Fig. 3 for cyclic loading. If initially, cyclic loading should take place
at amplitudes in the range - Gy < 4§ < Gy, the member will remain "elastic”
and the corresponding for~e-displacement time history will be along line MM'.
However as soon as the lateral displacement exceeds the yield level, hystere-
tic inelastic response follows with each subsequent cycle of deformation. In
Fig. 3, the yield level is first exceeded at point M' with the displacement
continuing to a value §3 as shown at point P'. The displacement then re-
verses and continues to 62 along curve P'MP (J = 1) which constitutes the
first full half-cycle of deformation following initial yielding of the member.
Again reversing the lateral displacement and continuing to §3 along curve
PP'Q'R' (J = 2), the second full half-cycle of deformation is completed. Had
this particular half-cycle terminated at point P' rather than R', continuing
repeated cycles of deformation from &8; to 8, and back to 831 would produce
stable hysteretic loops connecting points P and P'. Such stable behavior is
experienced provided the absolute values of O3, 82, and all previous displace-
ments have not exceeded GN and provided the shear stresses are relatively low.
The third full half-cycle of deformation in Fig. 3 starts at point R', pro-
ceeds along curve J = 3 to point T, and then follows the skeleton curve to
point R where the deflection equals §4. Note that at deflection §5 along
this curve, the lateral force is somewhat reduced from the value F, experi-
enced on the previous half-cycle as represented by point P. Such a reduction
at a fixed amplitude is experienced when the previous deformation time history
has exceeded § = * §y. This represents unstable hysteretic behavior which
follows with each subsequent half-cycle as shown by curves J = 4,5,6,7 and 8.
Note that quantities J, 83, t7 and F7 shown in Figs. 2, 3 and 4 refer to the
number of inelastic half-cycles following initial yielding, the displacement
at the initial point of the Jth inelastic half-cycle, time at the initial
point of the Jth inelastic half-cycle, and the lateral force at the initial
point of the Jth inelastic half-cycle, respectively.

Three important characteristics of inelastic cyclic behavior become ap-
parent (1) the reduction in overall (or average) stiffness with increasing
amplitudes of inelastic deformation beyond § = % 8y, (2) the reduction in
lateral resistance at a fixed displacement with each repeated full half-cycle
of inelastic deformation beyond § = * 8y, and (3) the shape of the hysteretic
loops as influenced by certain member parameters and loading conditions. It
is important when formulating an appropriate mathematical model that these
characteristics be represented in a realistic manner. To be practical how-
ever this model must be easily adapted to numerical procedures. Therefore,

a proper balance must be maintained between simplicity and accuracy.

FORM OF MATHEMATICAL MODEL

To formulate an appropriate force-deflection mathematical model, an
analytical expression must be developed which will characterize the Jth
inelastic half-cycle (J = 1,2,...) starting at time tj. Since in applications,
the extent of the Jth half is not known prior to its occurrence, this expres-
sion must be formulated knowing only the initial point (SJ, FJ) representing
t = t3 and the previous force-deflection time history.

To accomplish this, a function FJ(6) will be written as shown in Table
1 which passes through the known initial point (83,Fj), designated here as
point A, and an index point B whose location reflects the influence of the
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member's force-deflection time history prior to t = t;, The deflection at
point B, designated as 5%, is the maximum deflection which occurred prior to
t =ty for half-cycles of increasing deflection and is the minimum deflection
which occurred prior to t = ty for half-cycles of decreasing deflection; see
Eq. (1).

TABLE 1: RELATIONS CONTROLLING THE Jth INELASTIC HALF-CYCLE

HALF CYCLES OF INCREASING DEFLECTION, i.e. HALF CYCLES OF DECREASING DEFLECTION, i.e.
3=1,3,5,...1F INITIAL YIELD IN (-) DIRECTION, Fy=-F |J=2,4,6,...1F INITIAL YIELD IN (-) DIRECTION; F=-F
3=2,4,6,...1F INITIAL YIELD IN (+) DIRECTION; F=+F_|J=1,3,5,...1F INITIAL YIELD IN (+) DIRECTION: FtE
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The lateral force at point B, designated as F? is given by Eg. (2} whére FP
is equal to 1nstantaneous lateral force which was present when &8{(t) last
reached the value 6 as defined by Eq. (1) and where AF;_; and AFj are
positive quantities representlng registance losses due to possible unstable
hysteretic behavior during half-cycles J-1 and J, respectively. Each of
these losses exist only if the deflection time-history during or prior to the
half-cycle represented has exceeded + GN or - SN' The inelastic half-cycles
for T = 1 through J = 8 in Fig. 3 are separated and shown again in Fig. 4.
The initial point A, the index point B, and the terminal point C is shown for
each half-cycle.

In formulating function F_(8), it is convenient to use the slope of the
straight line passing through points A and B, i.e. KJ-(F%‘FJ)/(GM §y),3=1,2,3,
This function, with certain restrictions on its use, can be expressed by the
approximate empirical Egs. (3) and (4), Table 1. Quantities Ay and By
appearing in Egs. (3) and (4) are positive coefficients. Quantity GPJ
appearing in Eq. (3) and in the conditional relations is that value of §
which yields a zero value for F3;(S) using Eq. (4).

The first two terms on the right hand side of Egs. (3) and (4) express
the equation of the straight line passing through points A and B while the
remaining two terms in Eq. (3) and the single remaining term in Egq. (4)
represent the deviation of the function FJ(G) from this straight line. The
last term in Eq. (3) containing the coefficient By represents the pinched
form of the hysteretic loop. Implicit in the form of this last term is
the simplifying assumption that the pinched form is symmetric with respect
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to § = 0. This assumption is, of course, not strictly true.

Function FJ(G) as defined by Egs. (3) and (4) can represent the entire
Jth half-cycle only when it stays within certain bounds of the skeleton curve
Fs(8); i.e. the function F;(S) must never be extended across the skeleton
curve for [6[ > Gy. For example in Fig. 3, while half-cycles J = 4 through
J ='8 can be represented entirely by Egs. (3) and (4), half cycles J = 1
through J = 3 can only be partly represented by these equations. Function
F5(8) as defined by Egs. (3) and (4) represents half-cycles J =1, J = 2,
and J = 3 from their initial points to points M, P', and T, respectively.
The remaining portions of these half-cycles, namely portions MP, P'Q'R', and
TQR, must follow the skeleton curve . Mathematically this means that when
F;(8) as defined by Egs. (3) and (4) satisfies the condition

< < - ; >8 ; = 2,... 5
iFJ(a)[ iFs(a)l $ 8,5 8>6, 5 3=1,2, (5)
it is applicable. However, when Egs. (3) and (4) do not satisfy Eq. (5), it
is not applicable in which case Fg(8) should be used for F;(8). Obviously
therefore, the skeleton curve must be represented in mathematical terms.
Referring to Fig. 3, this relation can be expressed in the form

.
F
—616 -8, 5858,
- Yy
< 8§ <8
FY Gy <8 <8
Fs(a) =ﬁ—FY —6N565—6Y (6)
% _ %
Fy1—856—6 626N
N
El [
_Fy 1 - SS 6N + 3 § > - 5N

where BS is a positive scalar factor.

Parameters &_, BS, AF_, A_, and B_ appearing in the above relations
which formulate tﬁe overali mathematical model must be obtained from
experimental evidence. Having their numerical values along with the numerical
values for F,, and Gy, the Jth inelastic half-cycle is completely defined.

Once the Jth half-cycle is complete, its terminal point becomes the initial
point for the J+1 half-cycle. One defines this half-cycle in exactly the same
manner used for the Jth half-cycle. By this method, one can obtain the entire
force-displacement time history.

EVALUATION OF PARAMETERS IN MATHEMATICAIL, MODEL
The parameters of the mathematical model presented in the previous
section can be identified as ¥ , 8§ , 8§, B., AF_, A_, and B_. Based on

experimental data corresponding toya specimen with geometry and reinforcement
detailing shown in Fig. 1, empirical relations have been formulated for their
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numerical evaluation.

Factors Fy and 8y - Numerical values for lateral force and displacement at
initial yield, Iy and 6y can normally be obtained through analytical methods
of structural analysis.

Factor Oy'~ The lateral displacement at initiation of loss of lateral
resistance, GN can be evaluated using the empirical relation

8
= 0.05 + 2.58 no . (7)

2

where no = N/bD fé is an axial compression index.

Factor By - Factor Bg is a measure of the loss of lateral resistance due

To increasing lateral displacement, and as shown by experimental results,

is a function of applied axial load, N, and transverse reinforcement spacing,
s. 1Its value can be estimated using the empirical relation

a a
B, = 0.27 - 0.045 2 + (2.92 - o.49-§) n, (8)

S
Factor APz - For displacement amplitudes less than # §y, there is no loss
in resistance over a full half-cycle of deformation; therefore,
= < < <
AP, = 0  max. flee <, o<e<e (9)
For displacement amplitudes greater than t .. a loss in resistance does
occur which can be approximated by the relation

(10)

2 d
= - <
AF.J =[0.15 no + 0.002(3.33 s)]E'y GM > max.{IG(t)|}> GN 0 <t t

Displacement 8y is that value of ¢ beyond which the loss in resistance per
full half-cycle AFJ becomes significantly larger than that given by Eq. (10).

Factors Ay and B; - An analysis of experimental results shows that simple
empirical relationships can be used in the estimation of factors Ay and By,
namely:

A
J 2
Fy = - 0.17 + (0.27 + 0.30 no) UJ - (0.02 + 0.04 nO)uJ uJ 21 (11)
d
an BJ a 1/2
_—= ), - 0. - . _ - 2
FY 0.245 0.284 no 0.008 po HJ UJ 21 (12)

The quantity M_ appearing in Egs. (11) and (12) is the cyclic lateral dis-
placement ductility factor defined as:

l

J-1

J 28 (a3)
Yy

Factor BJ reflects the amount of "pinching", or the reduction of

M M
s
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instantaneous shear stiffness near zero lateral locad. It is well established
(see), for example [3]) that this reduction in stiffness is an inverse
function of a/D, the moment arm-to-depth ratio. Since in the present experi-
mental investigation only one a/D ratio (fairly high to prevent shear type
failures) was uséd, the effect of this ratio is not apparent in Eg. (12);
therefore, it is suggested that the quantity BJ/Py be increased properly

for decreasing values of a/D.

CONCLUDING STATEMENT

The mathematical model presented in the preceeding sections can be checked
against the experimental test data using a specially developed computer program.
An example lateral force-displacement relationship calculated through the use
of the mathematical model is presented graphically in Fig. 5. Only the
relationships corresponding to the first and last half cycles of lateral loading
at a lateral displacement amplitude in the inelastic range are duplicated. The
mathematical model reproduces satisfactorily the important response character-
istics pertinent to inelastic cyclic behavior. As evidence of the simplicity
of the mathematical model it is worth noting that the calculations needed to
generate the lateral force-displacement diagrams for 6 specimens, each with a
different combination of applied axial load and transverse reinforcement
spacing and each containing about 40 half cycles of loading, required about
3 seconds of central processor time in the CDC-6400 computer.

ACKNOWLEDGMENT

The authors acknowledge the financial support provided by the National
Science Foundation through Grant No. AEN73-07732 A02.

REFERENCES

[1] Atalay, B., and Penzien, J., "The Seismic Behavior of Critical Regions
of Reinforced Concrete Components as Influenced by Moment, Shear, and
Axial Force," EERC 75-19, Earthquake Engineering Research Center,
University of California, Berkeley, 1975.

[2] Bertero, V. V., Bresler, B., and Liao, H., "Stiffness Degradation of
Reinforced Concrete Structures Subjected to Reversed Actions," EERC
69-12, Earthquake Engineering Research Center, University of California,
Berkeley, 1969.

[3] Mahin, S., Bertero, V. V., Rea, D., and Atalay, B., "Rate of Loading
Effects on Uncracked and Repaired Reinforced Concrete Members,! EERC
72-9, Earthquake Engineering Research Center, University of California,
Berkeley, 1972.

[4] Celebi, M., and Penzien, J., "Experimental Investigation into the
Seismic Behavior of Critical Regions of Reinforced Concrete Components
as Influenced by Moment and Shear," EERC 73-4, Earthquake Engineering
Research Center, University of California, Berkeley, 1973.

3067 .



SYMM.ABT. ¢ .

s'-6"
!
le—o i 6" —f A S S B
n 6(d5":2-6 21(P3": 543 e e L o 1/2
" L.
6" 11/4 CLEARj lFl— I- I—T _\
¥ == e
1
4 i >
s #7 Lonclgygmm.—-/ - #a #3me
E vt TR, 8(1) SPECIMEN WITH CROSS-SECTION
e . L_ TIE SPACING =3 IN.
]
Fig. 1. Test Specimen Geometry and Reinforcement Details
m&)s . Fy(8)
(a) 3t J=| Flar )R / : J=5 awl s
84t 8, 4 ’F: e
S\ b 5: -3{ V / 8::(.8’)|Bz 55 5-; T )

- &
82 /5c L 8
8y - k
falls 'e 7 '8 s T
A

%
_8’
0 \/
83.85.87
39

||1 T T

_;
»
%
_
o d
o °
,
3
o

(b) jFen 8,C
F":Z r Fal8)
o J=T7 !
L Fik 8
¢ N

]t f3] el ts xs ' ', 's

/. .J:_..L._I_s 1
o “ v ]
y ! L, A i
:::: Fol8) FalS)
fs - J=4 a J=8

-5 L o
Fig. 2. Example Lateral e R ;
Displacement-Time e N K

and Corresponding 8. 7 prbe
Lateral Force-Ti )
Histories e Fig. 4. Lateral Force-Displacement

Relations for Inelastic Half
Cycles of Loading

Tew
Jx
Jrs N 20
'\\ /
FEE )\
3 8y B2 =
i LN s 13' o F ) e R
] :
Js9 s H
87 H
20
ST
Nl Jeg
R’ ;
Py oW 1 (==~= MEASURED, SPECIMEN 5)
NFgl8) 0 7 ) ] E

DISPLACEMENT, IN

Fig. 3. Example Lateral Force-  pig 5. (alculated Lateral Force-
Displacement Relation Displacement Relationship

3068



