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SYNOPSIS

This paper deals with finding the optimal position along the height of
a building structure where a sensor may be located, such that records of
strong ground shaking obtained thereat would yield a maximum amount of
information about the dynamic characteristics of the structure. After
modeling a structure by a shear beam, a general technique for solving
this problem has been indicated. Some preliminary results for the esti-
mation of the structural stiffness as a function of height have been pre-
sented together with their verification using simulated data.

INTRODUCTION

Numerous tall buildings around the world are being instrumented
nowadays with strong motion accelerographs, so that their motion during
strong ground shaking can be recorded. One of the prime motivations for
this is the construction of improved dynamic models from such data.
Often, for economic reasons, two accelerographs are used, one located at
the base of the structure and the other at some other floor level in the
structure, generally the roof. The record of the base motion is useful for
several earthquake related studies, thus justifying the location of the first
accelerograph. However, the second accelerograph may be so located as
to yield maximal -information about the structural model. This becomes
all the more important due to the finding [1]that for a structure modeled
as a shear beam, identification using base input and roof response may
lead to locally nonunique and thus grossly erronecus estimates of the
stiffness distribution. ‘

In this paper, we model a building structure by a fixed base un-
damped shear beam and present a methodology which can be used to de-
termine the optimal location of a sensor such that the noisy strong motion
records obtained at that location, when used for identification, would yield
the most accurate estimates of the distribution of building stiffness with
respect to height. Soil - structure interaction effects have not been con-
sidered.

THEORY
Model and Identification. For a structure modeled as a shear beam [2],

the horizontal structural motion r(x,t) in response to the known ground
motion w(t) is governed by the equations
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m(X)%;; = .;}.{.(k(x) %;E;') , (1)
£(0,8) = wit) , S=(L,t)=0 ; r(,0=0, SX(x0)=0 @)

where x is the position coordinate along the height of the structure,
while k(x) and m(x) are the unknown stiffness and known mass distribu-
tions in the structure.

The measurements consist of the record of the displacement at a
single location x = a for the time period (0, T). The identification prob-
lem consists of determining the stiffness k(x) using the model equations,
the base motion w(t), and the observed response, r°b5(a, t). A generally
used approach ccinsists of finding k(x) such that the corresponding model
response r™°9el(z ty matches the observed response as closely as pos-
sible over the period (0, T). A new and highly efficient first-order gradi-
ent algorithm for this purpose of history matching is described in [17.

Optimal Sensor Location Problem. For a given structure and a given in-
put, the estimate k(x) will depend on the observation site, a. In this pa-
per, we attempt to determine if the estimate K(x) will be closer to the
true distribution k(x) when the observations are taken at a particular lo-
cation, as compared to any other location.

For the sake of numerical treatment and ease of description, we
utilize a finite dimensional approximation of the problem through the use
of suitably fine grids of N and M nodes to cover the intervals [0, L] and
[0, T], respectively (M>N). Then the identification problem reduces to
determining the vector k of the N grid point values of k(x), using the M-
vectors £o S(a) and W .

In general, the observations are corrupted by the measurement
noise, e. Also, the numerically obtained history match between

o el(a) and ,1;,0 S(a) is imperfect. These result in the estimated stiff-

ness R being different from the true stiffness k. We then, due to (1),
have the nonlinear implicit relationship,

rmOdel(a)_£Obs(a) - f(,ié’,lf,;f,)

Given the probability densities for ¢ and the residual history match
error, we can obtain the probability density for K for any k by (say) a
Monte Carlo procedure. Then the covariance of the estimate error can
be determined. However, this would involve a prohibitive amount of com-
putational effort. As a result, we seek a simple, approximate, linear re-
lation between the history match error and the estimate error, which can
be easily inverted to obtain the probabilistic description of the latter.
Assuming that the history match error §r(a) and the consequent estimate
error &k are small enough to allow the linearization of the above rela-
tion, - we get

ér(a) = Adk , (3)
where A(MxN) has the elements 9r.(a)/0k.. These are the sensitivities
‘of the observations with respect to the pafameters {ki} .

2950



Using linear algebra, the matrix A can be decomposed as

A = UAVT 4)

where U(MxN) = [g(1), &(2),...,aMN)], V(NxN) = [y(1),3(2),...,x@®)1,
and A=diag(Ay, Aps..es Ay ) with X{2X,Z...2) 20. The sets {u(i)} and
{x(i)} each form an orthonormal set of vectors. The vectors {y(i)} form
a complete set and span the parameter space E*', whereas {g(l)} do not
span EM. However, a matrix U oMx(M-N)) = [u(N+1), «ee,3(M)] can be
constructed such thﬁ the (MxM) matrlx fu U is ortho% nal with its

%lumns spanning E™. Then defining @ = U 6r » o 6r,, and § =
8k , we obtain
5r = Ua+UGQ , 8k=VB . (5)
Substituting (4) into (3) and premultiplying by U T,
T = — T = - . I =
U 6£—E—AV k=73 or Cf-i-)\iﬁi ; i=1,2,...,N . (6)

This is a linear relation between the components of the history match er-
ror 6r along u(i) and the component of the estimate error &k along v(i).

Assuming that );>0 for all i, and that the history match errors
dr. are independent Gaussian random var1abl§s with zero means and a
uniform variance ¢, we have E{&r 6r T3 = 641, so that

-1 T =0 V!\-ZVT (7)

P sE{a;gag } = VE{EE }V = VA~ v E{arar juAa
The last expression gives an approximation, P, to the covariance
of the estimate based on the linearization (4). If any A, is very small, the
var;lances of the estimates are very large. If A; =0, for finite E"i =
= 0. Thus, the component of small changes in k along x(i)
has no mﬂuence on the measured data and consequently cannot be esti-
mated from it.

If p of the {)&} are zero, we may restrict the corrections to lie in.
the (N-p) dimensional subspace spanned by v(1), x(2),...,x(N-p). This
corresponds to taking the Lianczos pseudo-mverse [3] of A. Then we ob-
tain finite variances of the estimates. Let V = _L;L(l), v2),...,x(N-p)],
A= diag(h, A, -0 AN p ,B=V 8k, and Bk = VB,. Then we obtain the
partial covariance,

B = E{TEEE'} = VA °VT . (8)

The corrections &k now contain no components along y(N-p+l),...,
(N) and thus the estimates are biased. Without additional information on
, this bias cannot be estimated and the partial covariance P cannot be
used

The optimal sensor location for any structure may be obtained by
computing the covariance P of ) for given data for all the possible loca-
tions and picking the one that yields the smallest value of a scalar meas-
ure of P. The scalar measure used here is the trace.
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RESULTS AND DISCUSSION

For illustration, the case of a ten-storey building with a uniform
mass distribution of 3 units/grid length, whose true stiffness, k(x), line-
arly decreased with height (fig. 1) was analyzed. The input was the scaled
N-S component of the El Centro earthquake of 1940 (fig. 3). The finite dif-
ferencing of equations (1) and (2) was carried out using a uniform spatial
grid of 10 points. For the time integration, the implicit Crank-Nicholson
scheme with 400 equal time intervals was used.

In order to keep the computational effort reasonably small, the sen-
sitivities of the measurements, sampled at 66 time instants, uniformly
distributed over (0, T), were utilized. It was found that for sufficiently
large M and for uniform sampling intervals, the actual sampling times
and the number of samples did not affect the results. M and sampling
times were kept unchanged during the analyses for the sensor locations at
floor levels 2 to 10, level 1 being the basement.

As observed from (7), the larger the values of {X 1, the smaller is
the covariance of k. The magnitude of the singular values {\.} depends on
two factors: (a) the actual values of the sensitivities 8r /8k., which are -
directly proportional to displacements r.; and (b) the line a1] independence
of the sensitivities of the observations a.f.1L different times. The latter de-
termines the rank of A and has a large influence on the smaller of {\.}.
This factor is determined by the participation of the different modes o
motion in constituting the observed displacements. Numerical results in-
dicate that the contribution of the first factor increases as the sensor lo-
cation moves upwards because the response increases in amplitude,
whereas the rank of A decreases. From (7) it is clear that the smaller
of {X:} have the greatest influence on the covariance. Figure 2 contains
the piots of the normalized, averaged standard deviation of {k } against
the sensor location 'a’ for 5 different values of NP, the dimention of the
subspace used to compute P in (8). For NP = 10, the variances of {k.}
are the lowest for sensor location at level 2. For NP = 3 and 5, the par-
tial variances are smallest for the sensor at the top. However, these
cases involve unknown bias in the estimates. In the absence of additional
information, the second floor level is the optimal sensor location.

An important feature of the sensor location problem is that it can
not be exactly solved without the knowledge of k(x) and w(t). Hence, to
study the dependence of the optimal location on the actual values of these
functions, the foregoing analysis was carried out for cases of uniform
and linearly varying stiffness distributions using two different types of in-
put. In addition, buildings with three different heights of 5, 10, and 20
-storeys were treated. In all cases, the results about the optimal sensor
location were similar. These results indicate that it may be possible to
draw conclusions about the optimal sensor location in the absence of a
: Erlon knowledge about the actual functions k(x) and w(t).

Flgure 4 contains the plots of 10 vectors {v i)} for a =2 and a = 10.
: It is clear that the first few v(i) do not differ 31gn1f1cant1y in these cases.
- The subspace spanned by the first NP of {v(i)} appears to be only weakly
. dependent on k(x). Thus, the use of a given value of NP implies that the
corrgctions in the estlmate lie in approximately the same linear subspace
", irrespective of the values of k and a used.
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To verify these conclusions, the identification of the 10-storey
building with linear k(x) was carried out using simulated data. Measure-
ments contaminated by noise (zero mean, Gaussian, with standard devia-
tion equal to 12% of the rms roof level displacement) together with the in-
put described in fig. 3 were used for the identification. The history match
commensurate with the observation noise level was achieved by the algo-
rithm described in [ 1] using no constraints on the stiffness distribution,
thus implying an absence of any prior knowledge about it. The resulting
estimates are plotted in fig. 1. The advantage of the sensor at the second
level instead of at the roof is clearly borne out.

CONCLTUSIONS

(1) In the absence of any prior knowledge, the sensor located at a
floor level immediate to the basement yields the most information about
the stiffness distribution when the identification is done using a history
match of observed and model responses.

(2) The optimal sensor location problem cannot be exactly solved in
the absence of knowledge about the actual stiffness distribution and input
motion. However, the foregoing result was found not to strongly depend on
the actual stiffness distribution, so far as it is smooth, or on the actual
input motion so far as it contains sufficiently many frequency components.

(3) If prior knowledge about the stiffness distribution, either quali-
tative or probabilistic, is available, the partial variance P for an appro-
priate dimension NP of the estimate correction space can be utilized,
making further analysis possible.
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DISCUSSION

P.N. Agrawal (India)

What would be the preferntial location for second sensor
in a structure where stiffness is uniform or not varying with
height ? What about dams in particular ?
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