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SYNOPSIS

Presented are basic principles and an algorithm of physical model-
ling theory for the linear boundary value problems. Obtained are the ne-
cessary and sufficient conditions of modelling. These conditions are gen-
eralization of the known conditions similarity. Given are examples of the
application of the theory for solving structural seismic stability problems
by model tests. The modelling conditions which allow tc simplify methods
and technique of modelling of seismic impacts, material properties and geo-
metry of structure are described.

INTRODUCTION

Th= substitution of the prototype tests by investigations into its phys-
ical model is founded on the modelling conditions usually obtained by the
equation or dimensional analysis., The starting point of the similarity theory
is the approximation af deformation processes of a structure and its model
by mathematical moddls /1, 2/. Similarity is the simplest form of a linear
correspondence between a prototype "p'" and a model "m", at which model-
ling scales are constants

p
mf= '_;'r—n = const. (1)

The dimensional analysis is still a more simplified correspondence with
modelling scales of dimensionless values equal to unity. Transformation of
type (1) limits the scope of a model test as the similarity conditions re-
quire the identity of the idealizations ( mathematical models) "o" and "m'".
For instance, the similarity of a seismic stress-strain states of a struc-
ture and its model necessitate the observance of the following conditions:

n

- similarity of laws of wvariation of the external effects "p" and '"m" with
time, which requires to test a model for an impact similar to that of an
accelerogram;

- similarity of the equations of state for the materials of "p" and "m'",
which requires in practice to restrict the idealization to that of a linear-
elastic body;

- geometric similarity of a structure and its model, which presents serious
difficulties for model testing of thin~walled structures, etc.

To simplify the requirements for the models and to widen the scope
of modelling problems developed is a linear theory of physical nodelling
based on linear operator transformations. An algorithm of this theory and
its several applications for modelling structural seismic stability problems
are presented below.
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1. LINEAR THEORY OF PHYSICAL MODELLING

Let us consider a linear boundary problem "p" in an operator form:
P
at’ L h <50 o VT
8dek ' :9:: on £XT? (2)
CdPNdpgdp q{s in VP’*'ZD) tP:

(LJ"IZ n;k=1,2,...,m35:1‘2,_,,:”,

where @, 5 C f are the preassigned functions of coordi-
nates and ’ame, - unknown functions, L, - operators of a set of equa-~
tions, K — boundary condition operators, N - initial condition operators,

- a volume with a surface 3, , T - one-dimensional time space,

summed over A

Linear operator transformations of the independant variables and func-
tions are introduced by the following relations:

F‘P-—-mF M (3)

and the linear transformations of the operators:

L=m L, K = =m K", N'=m N" (4)

where 1 - linear op»‘-\rators.

Substituting (4) and transformations (3) formulated for the preassign-
ed and for unknown functions into (2), assuming all the operators to be
commuting and taking into account that the transformations of the indepen-
dent variables are centred affinity, obta,m the follovmng.

Mg Mg M "Ly =me f.'" .
Mgd Mg o dedem L |
d
Bi imaa T, I " (5)
m m Jd
( summation overd ). CJ Ng Y S gd d,sq'

To make (5) describe the boundary problem "m", it is necessary and
sufficient that the scales-operators obey the conditions.

m:mu mg“m nmnmgn I,

-1 -4 -1
m m =
mqs mcsn th yn I
where 1 is a unit operator, M~ are inverse operators., By analogy
to the similarity conditions, the equations ( 6) establishing the ties between
scales are named as the linear modelling conditions and can be written
in a criterion form. As a number of scale—-operators N always surpasses

-

(6)

a number of the equations N"r s N~ N of scales are specified on
the basis of investigation method employed, test conditions, available test-
ing equlpment etc. If scale~operators are constant and mg. =M (for

any 4,4 ) set (6) transforms into the usual similarity condltlons. Sub~
- stantiation of the linear modelling theory in terms of the functional analy-
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sis and group theory can be found in [3/.
2., LINEAR MODELLING OF SEISMIC STABILITY PROBLEMS

Modelling of seismic_impacts /4, 5/. The idealization of the deforma-
tion process of a structure under seismic impacts is made with the follow-
ing assumptions: the material is supposed uniform, isotropoic and ideally
linear-elastic; volumetric forces are ignored, over the interface of a struc-
ture with an ideally rigid foundation ¥, a displacement vector U 0ilE) is
given, the structural surface Z =3 -3, is free, the initial conditions are
zero. A corresponding boundary value problem in terms of the images of
Fourier is written down as follows:

T  =—pU. g.=U,.+U,
O?J'»J' P(O u‘- ) Zgi-J uL)J dt?
ESLJ’ =0yt ﬁ(O“.LJ. —q(kSLJ')’ (7)
Ul g = Tors TyMy|5,20, (Lik=1.2.3),
where 8 . - Kroneker symbol, the summation is made over the repeating

indices, tﬁg rest of the notation is that generally adopted for the theory
of elasticity. In (7) the given and the unknown functions are the complex
functions of parameter @ , therefore the scales of the transformation
images are introduced in tl;le folloning form:
- =m_exp (LY
P
,S.

M= 35 ¥; = arg fF-arg £,

]

m- =

\

“h

(:8)

where m - scale-operator of the moduli, Yz - scale-operator of the
arguments, Note that the argument transformations form the Abelian addi-~
tive group with unity Y = 0 and the properties identical to multiplicative
groups,

Applying an algorithm described in p. 1 to (7), obtained is a system
of modelling conditions comprising the conditions for the modulus scales
identical in form to the similarity conditions:

2 2 1 ~ ~-4_y

m[mwm?mE~’1, me m,m =~ =1,
~ N_‘_ —~ N-—‘q (9)

m,=1, mp M. My=1, M, muo-i,

and conditions for argument scales:
‘fa“"\ﬂ‘;:(’: EFE-_ L—i:O) \?H—\.Pﬁozo) (10)

where scale-functions of G are marked by ~ , other scales are con-
stants. Relations (9, 10) do not impose resrictions on the choice of
scales-functions M , Y5 and scale-constants m, ; m_ m_ . Hence,
model may be_testea undér "any'" easily. simulated dynamic impact. Re-
sponses of the prototype under seismic impacts described by a seismo-
gram or a accelerogram are calculated from model reactions by a linear
modelling algorithm. For instance, stress tensors of the prototype and the
model are related by
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e P = m
O‘fL(.s (x 1) =m g (xMt),

in which the scale~operator is of the form

o= Mg M, exp (1)@,

where ‘&, ) are dlrect and inverse Fourier transformation symbols.

Modelling of linear visco-elastic material properties /6/. Building
materials possess dissipative properties which can ke approximated by
models of visco-elastic bodies, The appropriate boundary value problem
is represented in Laplace imagess

-2 x *
u: , 2 E +ur,
&M “fP 1,3 Ht
= *
E’e 'n,s‘cr;; +¥ (O‘.. o‘kké‘.j)) (11)
*
) u.\z m,o:é né\ =0,
where E N 3 - complex functions of parameter P , characterizing ma-

terial dynamic visco-elastic properties. Inserting complex scales-functions
of the image transfcrmations and applying a linear modelling algorithm to
(11), the following relationship is obtained:

~2 ~ - —~ ,\._1— o~ _. ~ T~ "“‘if:
mgmympmﬁ_—h memm t=d, my=t, momomo =1,
~ ~ =4 - ~ _ —~ _"" - ~ -
mumuo~1) \QE.—239_-0, Per=Pyr =0, 9 5» , (12)

Here N - N*""6 sy the following scales may be assigned: the scales-
constants My, M, scales~functions i ,\9 * , characterizing the longitu-
dinal properties of materials "p" and "m", scales—fu.nchons m, ., Yu ,
characterizing spectral composition of the impacts "p" and ”m'P Moﬁeﬂmg
conditions (12) permit to perform recalculations of the response under
"any" dynamic linear longitudinal material properties of "p" and "'m". In
particular, one of the materials can be ideally linear-elastic or linear-
elastic with a frequency independent decay decrement, both materially
may be linear-eladgtic with different decrements and so on.

Model investigations of soil hydraulic structure seismic stability ad~
mit material property idealization by a model of an non-compressive linear
visco-elastic body. In this case conditions (12) allow to conduct a test
on both elastic and visco-elastic ( polymer) models.

Modelling of thin-walled structures [7, 8/. As is well known, in thin-
walled elements stresses and strains vary linearly with thickness, there-
fore the equilibrium equations or the equations of motion of the following
shape are formed for a middle surface

FD(e,w) =q, (13)

& -stress funclion,
where {-(8 ) - thickness functlon\/ W~ flexure function, D - linear or

non-linear differential operator. The structure of the equation (13) allows
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to select a thickness scale different from a dimension scale in plan,
which means that in the bounds of the condition of wall thickness, the
affine modelling of the geometry is possible. The latter is of substantial
value in the cases when the manufacture of a geometrically similar model
is technologically impossible.

CONCLUSIONS

When compared to similarity, linear modelling theory permits to widen
the range of structural seismic stability problems solved by physical model
tests. The complication of the algorithm for rescaling data from a model to
a prototype is no barrier if computers are made use of. The applicaion
of a linear theory for modelling quasi-static problems is presented in /9/
and some other publications of the same author.
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