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SYNOPSIS

The inherent structural, biological and ecological benefits of under- |
ground siting are of considerable interest to the nuclear industry. Para-
metric studies of the structural characteristics of the four principal
underground concepts a) Cut-and-Cover, b) Unlined Cavity, ¢) Lined
Cavity, and d) Lined Cavity with Annular Filling of Soft Material, indicate
1) the horseshoe shape to be the best profile, 1i) active rock bolting
superior to all other types of cavity reinforcement, iii) considerable
decrease in liner membrane forces (by 80%) and stresses in the medium (by
10-15%) due to isolation, 1iv) significant reduction of stresses in the
structure and the medium by proper combination of the demsity and elasticity
of the backfill in the cut-and-cover concept. The work has a number of
spin-off applications outside the nuclear industry.

INTRODUCTION

The paper deals with dynamic finite element analysis of underground
nuclear reactor containments subjected to blast excitation. The work is
based on the recent participation of the first author (Ref.l) in the Seismic
* Task Group of the ASCE Committee for Nuclear Structures and Materials. As
the character, intensity, duration and frequency of earthquake and blast-
induced ground motions are roughly similar, the results have practical value
in studying earthquake effects. From analysis of ground data obtained in
two nuclear explosions -~ CANNIKIN and MILROW and the San Fernando earth-
quake, Hays (2) has indicated that nuclear explosion time histories may be
more useful in near-field geotechnical analyses than has previously been
thought. The extensive work on aseismic design of above-ground reactors
and recent studies on missile impact effects, aircraft impact, blast effects
due to chemical explosiors, reactor core melt-down and tornadoes indicate
the advantages of underground siting with inherent general reduction in
complexity of seismic amplification and benefits of structural and biologi-
cal integrity. Other advantages are possibilities of urban siting, ecologi~
cal considerations, reduced effects on the landscape, ability to design
three-dimensionally, separation of component facilities, support capability
to equipment, reduced power transmission costs, increased number of accep-

table units and power capability from a single location and reduction of
decommissioning problems.
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Parametric studies are presented (Refs. 2 and 3) for structural charac-
teristics of the four principal underground concepts (Fig. 1): a) Cut—and-
Cover in Rock or Soil, b) Unlined Cavity in Rock, c¢) Lined Cavity in Rock -
or Soil, and d) Lined Cavity in Rock or Soil with Annular Filling of Soft
Material - with respect to Shape, Backfill Material, Cavity Wall Reinforce-
ment, Passive and Active Rock Bolting and Lining and Annular Filling. The
response to a step pulse, representing a blast excitation applied horizon-
tally, is studied using a plane-strain finite-element analysis with trian-
gular and rectangular elements over a sufficiently extensive finite region
restricted to the time~history free from stress-wave reflection effects.

The longer time durations in earthquake analysis can be handled with-
out an absorbing boundary by imposing additional material damping to the
soil elements as indicated in Refs. 4 , 5 and 6.

ANALYSIS

1. Cavity Shape: For the same area of opening a comparison of four
different shapes, i) circular, ii) semi-circular roof with vertical
walls, iii) flat circular roof with vertical walls and iv) horseshoe,
indicates the horseshoe shape to be the best with a stress decrease
of 10-15% compared to other shapes. An analysis of the different
horseshoe configurations is also presented. Figs. 2a to 2f and 3a to
.3d give typical studies which indicate the high horseshoe shape to be
the best from the viewpoint of stresses in the lining. However, the
stresses in the adjacent medium are higher than those for flatter shapes.

2. Cavity Wall Reinforcement (Rock Bolting and Lining): Studies of passive
" and active rock bolting, reinforced and prestressed concrete liners,
and steel liners indicate active rock bolting to be the best kind of
reinforcement. Rock bolting, with about 807% of the amount of the
steel required for a cavity liner, decreases the stress in the medium
by 25% or more compared to 107 for the liner. Typical studies are
presented in Figs. 4a to 4d. '

3. Isolation: A surrounding medium of soft, energy absorbing material,
e.g., closed cell polyurethane foam, reduces by about 80% the liner
membrane forces and bending moments and the stresses in the medium
by about 10-15% (Figs. 5a to 5d).

4. Backfill Material: Typical analyses of a cut-and-cover structure for
six different filling materials are presented in Figs. 6a and 6b. The
study indicates that the stress in the structure and the surrounding
medium are not significantly affected by individual values of the
density, P, and the elasticity, E, of the backfill material but only
by certain combinations of the two values. Proper selections of the
combined properties can lead to a considerable reduction in the stresses.

DISCUSSION

Conflicting comparisons of the Lumped Parameter (Half Space) and
Finite Element Methods for above-ground reactors have focussed attention
on the limitations and advantages of both approaches. However, for the
case of underground contaimments, it seems difficult to match the finite
element method by other methods for the following reasons: 1) the ability
to cope with sequential stress analysis for the in-situ, excavation and
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construction, and operation phases inclusive of elastic and inelastic dis-
continuities, and 2) the facility to eliminate the need for an artifically
absorbing boundary by the imposition of high material damping values

varying with depth and distance from the structure in conjunction with a
sufficiently crtensive mesh to simulate radiation damping (Refs. 4,5 and 6).
With the increasing number of reactors in seismic areas and other regioms
with risks of man-induced seismicity, there is an urgent need for intensive
studies of the underground concept. A cut-and-cover nuclear reactor is
being designed for Israel and there is considerable interest in the same
concept in other countries like West Germany.

The research programme has a number of 'spin-off' applications out-
side the nuclear industry to tunnels, conduits, and cavities for oil and
gas storage.
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