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SYNOPSIS

A stepwise linear stochastic method is presented for seismic stability
analysis of earth structures with strain dependent damping and shear moduli.
In this method, the seismic design input defined as response spectra curves
can be directly used. The technique of stochastic linearization is used to
obtain the best estimates of the soil properties for their use in a linear
step of the analysis. Stochastic definition of cumulative damage sustained
by soil is used to evaluate safety under seismic excitations. The factors
of safety at various locations of an earthen dam are obtained and compared
with those obtained by the conventional time history analysis approach.

INTRODUCTION

For stability evaluation of earth structures under seismic loads, cur-
rently time history analyses using recorded or synthetic accelerograms are
performed in which strain dependent soil properties are used. However, for
design the seismic input is more commonly defined in terms of ground re-
sponse spectra curves rather than a time history accelerogram. Therefore,
a method is presented herein whereby design response spectra curves can be
directly used with due consideration of strain dependent soil properties.

Hysteretic behavior of soil is commonly defined by equivalent strain
dependent damping and shear modulus curves, Seed and Idriss (1), such as
shown in Fig. 1. As in the currently used approach,)Ref. (2), an iterative
procedure is proposed herein for making use of these nonlinear soil proper-
ty curves. The best estimates of soil properties for use in an iteration
are, however, obtained through stochastic linearization technique, instead
of obtaining them corresponding to a certain fraction of the peak strain.
The formulation, with stochastic linearization, is developed for its use
" with the finite element method of analysis which is commonly used with soil
structures. Stochastic concepts are used to obtain the damage sustained by
the soil finite elements and to obtain their factors of safety.

ANALYSIS TECHNIQUE

The equations of motion for a finite element discretization can be
written as:

MX + D(e)X + S(e)X = -M{ 1} ig () (1)

where M, is mass matrix and D & S are damping and stiffness matrices

which depend upon the elemental shear strains. X is the vector of nodal
displacement relative to fixed base. A dot over a vector represents its
time derivative. Xg(t) is the base acceleration. Depending upon the level
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of strain in an element, damping and shear modulus values are obtained and
used to form element stiffness and damping matrices (2). These element

matrices are assembled to obtain the total structural matxjices. Eq. 1 is a
ponlinear set of equations as €, the elemental strain, depends on the nodal
displacements. It is intended to replace Eq. 1 by a linear equation, 1i.e.:

Mii+ci+1<x=—uf1}¥cg (t) (2)

This introduces an error, the magnitude of which can be written as:
e= [D(e) - C] X+ [S(e) - K] X 3

The most commonly used procedure for selection of C and K is to mini~
mize a norm of e. This norm is usually taken as the mean square value,
i.e., minimize E{ ¢'e}. Here prime over a vector indicates its transpose.
As the only variables which define C and K in Eq. 2 are the elemental damp-
ing and shear modulus values, the conditions for minimization are:

]

]
o [ECe'@)] = 0, and (4a)

q
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— [E'e)] =
an e e
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o

(4b)

vhere A\q and G, are the damping and shear modulus for the qth element of the
model. It is assumed that the excitation is a Gaussian stationary random
process. This assumption is not a serious handicap. Stationary response
due to such excitation is examined. At a node, the stationary respomnse and
its time derivative are uncorrelated at the same time instant. It has also
been observed that the correlation between them for any two differ-

ent points on a structure excited by ground motion is not significant either.
With this it can be shown that:

E[X'C E—f—c X] = E[)'('D(e)-:—g; 4 (5a)
E[X‘K-S%f- X] = E[X'S(s)?%; X] (5b)

Egs. 5 represent two sets of simultaneous equations in A_ 's and G 's
which can be solved to obtain the best linearized values of these parameters.
In the paper, however, only the results with the error being minimized in a
local sense, i.e., for each finite element of the model, are obtained. Error
equation analogous to Eq. 3 can be written separately for each element, and
minimization of the mean square value defines Aq and G, as follows:

q

Aq = E[Xq(e) x& Dq xq] / E[X& Dq xq] (6a)
G = C ' '

q E[Gq(e) xq sq xq] ! E[Xq sq xq] (6b)

where Xq 1s the nodal displacement vector for the element nodes, D, and S
are element damping and stiffness matrices with maximum values of 3amping
coefficient and shear modulus, and A.(¢) and G () are damping and shear
ths variables. As Eq. 6 corresponds to minimization of error for each
eiengng, it does not represent a true minimum of e for the whole system.
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However, as minimization of the norm of e was arbitrarily selected (mainly
for mathematical convenience), these values of A_ and G, are, probably, as
good as the ones obtained from Eq. 5. 1In Eq. 64 straid in an element de-~
pends only on the nodal displacements and not the velocities. Making use
of the fact that a response and its derivative are uncorrelated at the
same node and approximately uncorrelated for different nodes, Eq. 6a re-
duces to:

A =E[x (e 7
q[q()] 7
To obtain Agq and Gq from Eq. 6 and 7, quantities E[xi], E[ez],E[xixj]
and E[Gq (e)xix»? are required. These quantities in terms of ground spec-
tra curves can be defined as follows:
N
E[x2]=(£ w%(i)YZRZ/W4)/FZ+ Second Order Terms
i j=1 3 33 3
2. N o 2 2 4
E{e"1=(C £ Y5 R2/w) 7 + Second Order Terms
j=173 33773
N 2, 4,2
E[xixj] = kﬁlyk wk(i)wk(j)Rk/wk/F + Second Order Terms

E[@q(s)xixj] = aE Eg(e)ez} +b E {EA(E)} 8)

where

]

a = E[xy¢] E[xje]/ {E(Sz)}z

b = E[xixj] - E(xie)E(xje)/E(ez)
N 2.2, 4,2
E (exi) = (I ij 1)y R;/w,)/F” + Second Order Terms
5217373 Y
where it is assumed that e, x; and x,; are jointly normal. The second order
terms can generally be neglected. Here ws, Y4 and ¥:;(i) are the modal fre-
quency, participation factor and displacement for noae i, respectively; N=
number of degrees of freedom; Rs=the acceleration response spectrum value
for mode j; Ey=element strain mode shape. Modal damping is defined as Bj=
wfcw-/(ZB ); F=the peak factor by which the root mean square response is
3‘ tgpliea to obtain the design response. These equations are similar to
those in the method of square root of the sum of the squares (SRSS) common-
ly used in seismic analyses.

Procedure is essentially iterative. For initially assumed values of
Aq and G, for each element total damping and stiffness matrices are ob-
tained. These matrices are used to obtain modal quantities to define a bet
ter estimate of A, and G;. 1In a few iterations a good convergence in the
values of A, and 8 can be obtained. The modal quantities in the final it-
eration are used £3r evaluation of damage potential and factor of safety as
follows.

DAMAGE POTENTIAL: To evaluate the safety of earth structures Palmgren-
Miner's linear cumulative damage concept is commonly used in practice. For
safety of a structure this cumulative damage should be less than 1.0. The
relationship between the amplitude of stress response, s, and number of

2365



cycle to fatigue failure, N, for most soils can be represented by the fol-

lowing relationship:

Ns® =¢C )

where b and ¢ are constant which depend upon the type of soil and its state
of stress at site. This curve if plotted on a log-log scale represents a
straight line. For such strength curves it can be shown (3) that the ex-
pected value of damage sustained by the soil due to a stationary response
of duration T is:

b

E[D(T)] = T M C T/ s"p_(s)d, (10)
0

where M = expected number of peaks per unit time, s = shear stress and pg(s)=
the probability density of stress peaks, defined as (3),

ps(s) = /1-a? exp (-52/[202(1—012)])/%

as

202

where @ = vo/M is a measure of band width of the response, vp=zero crossing
rate, and 0 = standard deviation of stress response. For stochastic re-
sponse, the expression for the variance of damage is not available at this
time. However, through approximate analysis Crandall and Mark (4) have
shown that for high damping values the variance of the damage is small.

For soils the damping values are high, and therefore, expected damage is a
good measure of the actual damage potential of soil structures.

+

{ verflsa/ { o/Z(1-0°)}]} exp(-s2/20%) (1)

FACTOR OF SAFETY: A more comventional measure of safety of a structure
is the factor of safety. For soils under dynamic stresses it can be defined,
for a predecided number of cycles, as the ratio of the cyclic strength to
the equivalent stress to which the soil is subjected. TFor the strength re-
lation of Eq. 9 which is a straight line on log-log scale, the factor of
safety does not depend on the chosen number of cycles, and can be related
to damage D by the following equation:

F.5. = D—llb (12)

NUMERICAL RESULTS: The above approach has been used to obtain the fac-
tor of safety of a small earth dam shown in Fig. 2. This dam represents a
dike used in the ultimate heat sink of a nuclear power plant. The seismic
stability of such dikes is required to be evaluated to ensure the availabil-
ity of the cooling water for at least 30 days in case the main source of
cooling water is lost. The cross section of the dike was discretized into
finite elements; for horizontal excitation, only half the cross section of
the dam was considered due to symmetry of the structure. Strain dependent
shear modulus and damping curves are shown in Fig. 1. The maximum values
were taken as 1080 ksf and 0.350. Different strength curves were used for
different elements. These are shown in Fig. 3. A peak horizontal ground
acceleration of 0.12g was considered. Input was defined in terms of re-
Sponse spectra curves as described by Newmark, Blume and Kapur (5). The
factor of safety also depends upon the peak factor used for obtaining the
mean square response from the SRSS response. This factor may vary between
2.0 to 3.5. The guidelines provided by Hou (5) have been used to estimate
the peak factor and equivalent stationary duration of the earthquake. For
‘a 10 secs. duration of earthquake with 2 secs. of strong motion phase, the
~peak factor was estimated to be 2.874 and equivalent stationary duration
as 4 secs. corresponding to the fundamental frequency of 8.0 cps.
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The factor of safety values for a few important core elements of the
model obtained by the method proposed in this paper and by the common ly
used time history analysis are given in Table 1. The values for the
peripheral elements which are not of much significance have been omitted
from the Table. In the time history analysis, a synthetic time history
whose response spectra enveloped the prescribed spectra was used. It
is seen that the values obtained by the two method agree reasonably well
with each other.

SUMMARY AND CONCLUSIONS

For seismic stability evaluation of earth structures, a simple approach
which can be directly used with prescribed response spectra and which con-
siders strain dependent soil properties is presented. Stochastic principles
are invoked, but the computations involved are only a trifle more complicated
than the usual SRSS approach. No synthetic time history consistent with
given spectra are required for analysis. The approach can also be applied
for evaluation of liquefaction potential of soil strata.
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Table 1

Factors of Safety by Time History Analysis and Proposed Approach

Elem. Str. Factor of Safety Elem. Str. Factor of Safety
No. Curve Time Proposed No. Curve Time Proposed
No. Hist. Method No. Hist. Method
3 2 3.63 3.74 1 1 3.07 2.75
4 1 3.30 3.22 11 1 2.86 2.55
5 1 2.61 2.52 14 2 3.11 2.44
6 1 2.41 2.31 15 2 3.10 2.44
9 2 3.03 2.55 18 3 4.73 3.31
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