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SYNOPSIS

Usefulness and limitations of the different boundary conditions frequently used in
numerical wave propagation formulations are discussed. New approximate boundary
conditions for numerical determination of the response of earth masses and structures to
earthquakes are proposed. Their formulation is general, applicable in one, two or three
dimensional problems. Model requires definition of excitation in terms of a front of plane
seismic waves. A modified earthquake simulation algorithm, which includes source
parameters, is recommended for the purpose. Computer applications of the theory are
presented using a two dimensional finite element programme,

INTRODUCTION

Determination of the earthquake response of soil deposits using discrete methods of
solution requires the definition of fictitious boundaries with conditions that minimize or
prevent spurious reflections. This problem has been studied for several years?*:® 56,
Analytical techniques used have generally been restricted to the absorption of outgoing
waves generated within the discrete model, applying the excitation at an infinitely rigid
bedrock and assuming that the seismic motion at this level is produced by shear waves
propagating upwards.

The purpose of this paper is to define conditions at boundaries, here called active,
which allow free transmission of waves across the boundaries as it would occur if the
discrete domain were continuous (fig 1). In the formulation the restrictions of rigid
bedrock and shear wave excitation are automatically removed. The general procedure of
including these boundary conditions in a finite element rnodel is introduced using the
principle of virtual displacements which is valid for bath linear and nonlinear soil models
and requires the assumption of linear elasticity only in the vicinity of the active
boundaries. Then follows a discussion of the definition of the seismic waves required by
the model. The effectiveness of the boundary conditions is illustrated by numerical
examples. Finally recommendations are given for the use of the model proposed.

ACTIVE BOUNDARIES FORMULATION
Consider for simplicity the one dimensional wave equation
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where u; = the vertical component of the displacement field u;*, x; = horizontal
coordinate, ¢t = time and C; = shear wave velocity.

The general solution of eq | may be written as
u; =f (x; = Gst) + F (x; + Ct) )
where f, and F, are any differentiable functions of their arguments.

The physical interpretation of eq 2 is that f, is a disturbance travelling with speed
C; in the positive direction of the x; axis (fig 2) and F, a disturbance moving in the
negative direction. This suggests that if u, represents the displacement at pointx; = a
produced by an earthquake, then f, is the part of u, transmitted into the region of
x, > a - seismic waves, .and F, is the part that leaves it — reflected waves.

Thus considering a fictitious boundary at point x; = a, it is always possible to find
boundary conditions that allow the free passage of waves. This fact leads to the definition
_of a semi-infinite domain, x, > a which models the behaviour of the original infinite one.
To derive these boundary conditions, consider the time derivative of displacement
u, as
Uy =—Cf + G Fy (3)

where the prime represents the derivative of a function with respect to its argument.

According to the theory of linear elasticity of shear stress 0,, is given by

0
012 = G —2 4)
0x,
where G = shear modulus of the medium and
ou
> = f{+ Fj ()
0xy

Combining eqgs 3 and 4 it follows that the shear stress in a medium with mass density
pis
012 =—p G2 Sz — i13) (6)
.which is equivalent to the vertical external traction

1y =pC 2 f; — 1) (7

which in turn defines the active boundary condition for a one dimensional shear wave
propagation problem.

The foregoing formulation can be easily extended to body waves of the
compressional type, so that the horizontal traction associated with 2 volumetric
disturbance travelling along the horizontal axis is

ty=pCp Qf; —1y) (8)

* Index notation is used with variation one to threc unless otherwise stated.
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Restricting the domain of definition of eq 13 to a finite element, the displacement
vector may be approximated as

u = Qi Uy where k=12,...,N (14)
and the scismic excitation as
fi = due Up where k =1,2,...,N (15)

where ¢ = ¢ (x;) are the modal or interpolation functions, Uy = Ui(t) the N
generalized coordinates — unknown nodal displacements, and Uy is the seismic excitation
vector whose non-zero components correspond to nodal points contained in an active
boundary.

From eqs 13-15 follows a matrix equation of the form®
Kim Uy + my, Uy = pm (16)

where k;,, and my,, are the stiffness and mass matrices of the element respectively and
Pm is the load vector.

The load vector for the particular case of surface tractions given by eqs 11 and 12 is
pm = [ p1G, QUE- U b0 + Cs QUE - Up) big b1 S + [ BiymaV
s 14

where =123 gm=1...,N (17)

As for nonlinear problems the use of active boundaries is also direct inasmuch as the
domain is linear elastic in the vicinity of these boundaries, but the finite element
formulation has to be made incremental with linear properties in each increment.

NUMERICAL EXAMPLES

To show the effect of boundaries in the numerical solution of wave propagation
problems two examples are presented. First, a one dimensional model whose shear wave
excitation is a horizontal pulse (fig 3) applied at base level. Second, a two dimensional
soil structure subjected to a similar excitation.

In fig 4 a comparison is made between the response of a model with active boundary
and another with rigid bedrock. The result of the comparison is conclusive. Infinitely
rigid bedrock supplies an ever increasing amount of energy into the system whereas active
boundaries transmit approximately the correct amount of the energy back to the source.

A comparison between the responses at different points of the two dimensional
model (fig 5) with rigid and active boundaries is shown in fig 6. Once again the effect of
the restrained energy in the system is present.

CONCLUSIONS

The feasibility of modelling a semi-infinite soil deposit by a finite one with active
boundaries was illustrated in this paper. The formulation is approximate inasmuch as it is
based on the assumption of plane waves for which the propagation direction is known.
The hypothesis of plane waves is only valid at points sufficiently distant from the source?
Furthermore, although it is always possible to evaluate the direction of the waves inside
the active boundaries, very little is known about the actual arrival of seismic waves;
hence the assumption of normal incidence at active boundaries may lead to erroneous
results, i.e., for incident angles less than 30°.3
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where C,, is the velocity of compressional wave.

Generalising the previous concepts for a front of plane body waves of shear and/or
compression type advancing along a line defined by its direction cosines »;, the boundary
forces are .

L=pCp (2f; — uy) 9)

;;=p Cs (2}2_5.,-) where i=2,3 (10)

equivalent to eqs 7 and 8 with all the variables written in bar form referred to a system of
axes in which the x; axis coincides with the direction of propagation.

In general the direction of a front of body waves is not known so it is not possible to
develop exact active boundary conditions. An approximation, which generally allows the
transmission of waves well within the required engineering accuracy, is to consider that
the wave front arrives normal to the boundary3e.g.,

ty=pCp 2fy — 1) an
ti=pCs 2 f; — ) where i = 2, 3 (12)
are the forces at a boundary normal to the x; axis.

SEISMIC WAVES SIMULATION

The problem of defining the input motion in soil amplification studies is indeed an
important one. The assumption that seismic waves arriving at a bedrock surface are
produced essentially by shear waves propagating upwards covers only a limited range of
applications. Earthquake motions are in general the result of a very complex wave
transmission process dependent on local geology and on source parameters. The ideal way
of solving this problem would be to use strong motion records made upon rock at sites of
interest. Unfortunately most of the recorded earthquake motions have been made upon
soil, i.e. records affected by local site conditions. v

An earthquake simulation model has been devised, however, which includes in its
formulation source mechanism effects* and can be used to generate seismic waves at a
fictitious boundary of a soil deposit. Three of the components of an earthquake —two
horizontal and one vertical, can be simulated at two different sites simultaneously. The
excitation includes the contribution of body and surface waves as well as the effect of

fault inclination.

FINITE ELEMENT MODEL

Inclusion of active boundary conditions in a general finite element formulation may
be achieved using the principle of virtual displacements, which for a linear elastic body
with elastic constants A and G ,can be stated as

dup 96y du; dbuy . 4
f 2 Suk 00U | O 0u; + Bu;  dbuy + pibu;)dV =
v 0x; 0x; Oxy Oxx oxy 0x;

= f t;j6u;dS + f B;du;dV (13)
S v .

where V7 and S are the volume and the boundary of the body.respectively, B; = body
force vector and & = first variation operator.
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A way of improving the effectiveness of the active boundaries is to use in their
vicinity a cylindrical wave approximation in terms of potentials. This formulation
requires the evaluation of the curvatures and the direction of the wave front at each
instant, which substantially increases the solution time of a finite element programme. An
easier way of achieving a good approximation without increasing the computing effort is
to estimate the general trend of the plane wave front, orienting the active boundaries
normal to them. With few exceptions, the consideration of the free passage of waves in
soil amplification studies is essential since it affects not only the magnitude of the ground

response, but also its frequency content and duration.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the helptul contribution of Professor O. Rascodn
regarding the simulation of seismic waves. Also special thanks to Professors E.
Rosenblueth and S. K. Singh for their suggestions in the critical revision of the

manuscript.
BIBLIOGRAPHY
1. Ayala, G, Aranda, R and Asfura, A, “Fronteras activas en dindmica de suelos™,
Procs, IV National Conference in Earthquake Engineering, Oaxaca, Mexico (1975)

2. Castellani, A, “Boundary conditions to simulate an infinite space’, Meccanica, 9,
4(1974), 199-205

3. Lysmer, J and Kuhlemeyer, R L, “Finite dynamic model for infinite media”,
Journal of the Engineering Mechanics Division, ASCE, 95, EM4 (1969), 859-77

4. Rascén, O A and Chévez, M, “On an earthquake simulation model”’, Procs, V
WCEE, Rome (1973)

5. Tseng, M N and Robinson, A R, “A transmitting boundary for finite-difference
analysis of wave propagation in solids”, Civil Engineering Studies, Structural
Research Serie, 420, University of Illinois, Urbana (1975)

6. Ukaji, K, “Analysis of soil-structure interaction during earthquakes”, Doctoral
dissertation, Stanford University, California (1975)

2272



UZ(XI,*)

—

fa

1L
r‘C_s(_'f——A?rl q X

it |
T —

£t
!

Active o

T

boundorie's'v.y o C,t
//" \L—-——-————J C(t+at) —
-]
Sou'rc;_ "
Fig 1. Active boundary - Fig 2. Shear waves propagating
along x; axis
U{ } U, m
A
l A c
0 0.5 1.0 0.21— —
. Time,sec R
u.’ L 5 Active Rigid !
boundary base
| Lo ol >—C
) 0.5 1.0 : % P
1 ‘
.. If \
b v ¢ °
i !
[\‘ l___ o Al o1 i
o \ N/ o5 1.0 o 0.5 |\ 19" Time, sec
\J/"\/
Fig 3. Excitation used in numerical Fig 4.0ne dimensional response model
examples
o GL Rigid base
A : — — — Active boundary
u,,m M
l 04} / \
| ); / B
g! Active boundaries ' 0.2
.
5 B
L) \

y Ll L AN L
1 0 0.5 No 1.5
Wave front direction Time,sec

Fig 5. Two dimensional example Fig 6. Two dimensional response model

2273



