LIQUEFACTION SUSCEPTIBILITY AND GEOLOGIC SETTING # T. Leslie Youd I and Seena N. Hoose II #### SYNOPSIS Liquefaction-induced ground failures that occur during earthquakes are confined to specific geologic settings. An analysis of published earthquake reports shows that shallow, saturated, Holocene fluvial, deltaic and aeolian deposits and poorly compacted artificial sand fills have highest susceptibilities to liquefaction and ground failure. Generally smaller susceptibilities are found in Holocene alluvial-fan, alluvial-plain, beach, terrace and playa deposits. Pleistocene sand deposits are generally even less susceptible, and glacial till, clay-rich and pre-Pleistocene deposits are usually immune to liquefaction. #### INTRODUCTION Liquefaction-induced ground failures, such as flow landslides, lateral-spreading landslides, bearing capacity failures and ground settlement (Youd, 1975), have been a common cause of major damage during past large earth-quakes. These ground failures have been confined to specific geologic settings. Thus past experience can provide a useful guide for estimating possible ground failure hazards associated with liquefaction during future earthquakes. An analysis of published earthquake reports is made here to identify geologic settings most susceptible to liquefaction. GEOLOGIC FACTORS CONTROLLING LIQUEFACTION SUSCEPTIBILITY A summary of ground failures and other effects attributable to liquefaction during many past earthquakes as a function of geologic setting are listed in Table I. These data show that the following geologic and hydrologic factors control liquefaction susceptibility. Environment of deposition. -- Deposits most commonly disturbed by liquefaction have been those laid down in a fluvial environment. Deltaic deposits, though not so widespread as fluvial deposits, have also been commonly and, in many instances, catastrophically disturbed. Colluvial and aeolian sand deposits, in instances when they were saturated have been commonly affected as well. Alluvial-fan, alluvial-plain, beach, terrace, playa and estuarine deposits have been affected in many instances, but not so commonly as the deposits listed above. Glacial till and laterite deposits have been generally immune to liquefaction. It is inferred from these rankings that degree of sorting, amount of compaction during sedimentation, and grain-size class are major factors controlling liquefaction susceptibility; the greater the sorting and the looser the packing during sedimentation, the greater the liquefaction susceptibility. Clay-rich sediments are generally immune to liquefaction. Age of deposit. -- Holocene deposits have been much more commonly disturbed by liquefaction than Pleistocene deposits, and pre-Pleistocene deposits have rarely been affected by liquefaction. Even within the Holocene, liquefaction susceptibility apparently has diminished with age. Research Civil Engineer, U. S. Geological Survey, Menlo Park, California II Physical Science Technician, U. S. Geological Survey, Menlo Park, Calif. Cementing and compaction by natural processes are important factors that reduce susceptibility with age. Changes in topography, water table depth, and depth of burial due to post-depositional geologic processes are incirect factors that commonly reduce, and occasionally increase, the liquefaction susceptibility with age. Water table depth and depth of burial. -- Most episodes of liquefaction have apparently developed at relatively shallow depths (probably less than 10 m) and in areas where the water table (free or perched) was near or within a few meters of ground surface. Vulnerability to liquefaction has decreased with water-table and sediment depth, and only a few instances of liquefaction were reported at depths as great as 100 m. Increase of overburden pressure and general increase in sediment compactness with depth are likely the primary factors controlling this tendency. #### CONCLUSIONS Fluvial deposits pose the greatest hazard for damage from liquefaction-induced ground failures because they are highly susceptible to liquefaction, are widespread in occurrence and are frequently sites of considerable development. Deltaic deposits also pose a considerable hazard but their areal extent is smaller and frequently they are less developed sites. Saturated aeolian deposits are susceptible to flow landslides which constitute a serious hazard in many developed areas. Poorly compacted artificial sand fills may also present a hazard to construction from bearing capacity failures and lateral spreading landslides during seismic shaking. ### **BIBLIOGRAPHY** - Close, U. and McCormick, E., 1922, Where the mountains walked: National Geographic, v. 41, no. 5, p. 445-472. - Davis, T. Neil, 1960, A field report on the Alaska earthquakes of April 7, 1958: Bull, Seismol. Soc. Am., v. 50, no. 4, p. 489-510. - Dixon, S. J., and Burke, J. W., 1973, Liquefaction case history: Am. Soc. Civil Eng., Jour. Soil Mechanics and Found. Div., v. 99, no. SM11, p. 921-937. - Dobry, R., and Alvarez, L., 1967, Seismic failures of Chilean tailings dams: Am. Soc. Civil Eng., Jour. Soil Mechanics and Found. Div., v. 93, no. SM6, p. 237-260. - Duke, M., and Leeds, D. J., 1963, Response of soils, foundations, and earth structures to the Chilean earthquakes of 1960: Bull., Seismol. Soc. Am., v. 53, no. 2, p. 309-357. - Fuller, M., 1912, The New Madrid earthquake: U. S. Geological Survey Bull. 394, Washington, U. S. Govt. Printing Office, 118 p. - Home Office, Bureau of Social Affairs, Japan, 1926, The great earthquake of 1923 in Japan: Sanshusha Press, Tokyo, Japan, 615 p. - Kawasumi, Hirosi, Ed., 1968, General report on the Niigata earthquake of 1964: Tokyo Electrical Engineering College Press, Japan, 550 p. - Kuribayashi, E., and Tatsuoka, F., 1975, Brief review of liquefaction during earthquakes in Japan: Soils and Foundations, v. 15, no. 4, p. 81-92. - Lawson, A.C., Chm., 1908, The California earthquake of April 18, 1906: Carnegie Inst. of Washington D.C., v. 1 and atlas, 451 p. - Middlemiss, C. S., 1910, the Kangra earthquake of 4th April, 1905: Memoirs, Geological Survey of India, v. 38, 409 p. - N. Z. Department of Scientific and Industrial Research, 1933, The Hawke's Bay earthquake of 3rd February, 1931: N. Z. Dept. of Sci. and Ind. Res. Bull. no. 43, Wellington, N.Z., 116 p. - Oldham, R. D., 1899, Report on the great earthquake of 12th June 1897: Memoirs, Geological Survey of India, v. 29, 379 p. Oldham, R. D., 1926, The Cutch (Kachh) earthquake of 16th June 1819 with - Oldham, R. D., 1926, The Cutch (Kachh) earthquake of 16th June 1819 with a revision of the great earthquake of 12th June 1897: Memoirs, Geological Survey of India, v. 46, pt. 2, 77 p. - Roy, S. C., 1939, The Bihar-Nepal earthquake of 1934: Memoirs, Geological Survey of India, v. 73, 391 p. - Seed, H. B., Lee, K. L. Idriss, I. M., and Makdisi, F. I., 1975, The slides in the San Fernando Dams during the earthquake of February 9, 1971: Am. Soc. Civil Eng., Jour. Geotechnical Div., v. 101, no. GT7, p. 651-688. - Steinbrugge, K. V., and Moran, D. F., 1956, Damage caused by the earthquakes of July 6 and August 23, 1945; Bull., Seismol. Soc. Am., v. 46, no. 1 p. 15-33. - Stuart, Murray, 1920, The Srimangal earthquake of 8th July, 1918: Memoirs, Geological Survey of India, v. 46, pt. 1, 70 p. - Suzuki, Ziro, Ed., 1971, General report on the Tokachi-Oki earthquake of 1968: Keigaku Publishing Co. Ltd., Japan, 754 p. - Tocher, D., 1956, Movement on the Rainbow Mountain fault: Bull., Seismol. Soc. Am., v. 46, no. 1, p. 10-14. - Tsuya, H., Chm., 1950, The Fukui earthquake of June 28, 1948; Report of the special committee for the study of the Fukui earthquake: Tokyo, Japan, published by the committee, 197 p. - U. S. Army Corps of Engineers, Far East Command, 1949, The Fukui earthquake, Hokuriku region, Japan, 28 June 1948, Volume I, Geology: U. S. Army, Far East Command, Geological Surveys Branch, Intelligence Division, Office of the Engineer, prepared by John J. Collins and Helen L. Foster, 81 p. - U. S. Geological Survey, 1966-1970, The Alaska earthquake, March 27, 1964: U. S. Geological Survey Professional Papers 542-A, 542-B, 542-C, 542-D, 542-E, 542-F, 543-A, 543-B, 543-D, 543-E, 543-F, 544-A, 545-B, 545-C, 545-D. - Youd, T. L., 1971, Landsliding in the vicinity of the Van Norman Lakes in the San Fernando, California earthquake of February 9, 1971: U. S. Geological Survey Professional Paper 733, p. 105-109. - Youd, T. L., 1975, Liquefaction, flow and associated ground failure: Proc. U. S. Natnl. Conf. on Earthquake Eng., 1975, Ann Arbor, Michigan, p. 146-155. - Youd, T. L. and Hoose, S. N., *in press*, Historic ground failures in northern California triggered by earthquakes: U. S. Geological Survey Professional Paper 993. TABLE I. -- EFFECTS ATTRIBUTABLE TO LIQUEFACTION DURING MANY LARGE EARTHQUAKES AS A FUNCTION OF GEOLOGIC SETTING | EARTHQUAKE
(Magnitude, M) | DEPOSIT | EFFECTS ATTRIBUTED TO LIQUEFACTION | APPURTENANT INFORMATION | REFERENCE | |--|---|---|---|--| | 1811-1812, New
Madrid, Missouri
USA
(M unknown) | Holocene and Pleistocene fluvial
deposits and alluvial-fan and
-plain deposits along
Mississippi and tributary
rivers | Pervasive to abundant lateral spreading, ground settlement, fissures and sand boils over a 3,600 km² area and sporadic to abundant occurrences of these effects over at least an additional 10,000 km² | Water table was near or above
surface in much of the inten-
sely affected area. Holocene
sediments were much more
severely affected than
Pleistocene sediments | Fuller, 1912 | | 1819, Cutch, India
(M unknown) | Holocene fluvial deposits along
Sandham and other rivers in
Cutch highlands | Sporadic to abundant fissures, sand boils with diameters as large as 6 m, occurred in a 15,000 km ² area | | 01dham, 1926 | | | Holocene or Pleistocene
alluvial-plain deposits east of
Cutch | Fissures and sand boils at two separate locations | | 01dham, 1926 | | | Holocene sebkha deposits in
Rann of Cutch (a large, low-
lying flat, open to the sea, on
which sands blown by winds in
dry seasons are reworked by
shallow flood waters in monsoon
seasons) | Sporadic to locally abundant sand
boils with cones as high as 2.4 m
occurred in an 8,000 km² area | Water table generally less
than 1 m deep | 01dham, 1926 | | 1897, Assam, India
(M 8.7) | Holocene and Pleistocene fluvial
and alluvial-plain deposits in
Brahamaputra and Ganges
River valleys | Generally pervasive to abundant lateral spreading, ground settlement, fissures and sand boils with numerous bearing capacity failures in a 7,600 km² area. Sporadic to abundant occurrences of these effects over, an estimated additional 200,000 km² area | Effects decrease in severity with increasing depth to water table | 01dham, 1899 | | | Holocene and Pleistocene
Laterite (Khiar) deposits (hard
red soils of the epicentral
district) | Specifically noted that fissures
accompanied by sand boils did not
occur and that damage was much less
severe on the laterites. | | 01dham, 1899 | | 1905, Kangra, India
(M 8.3) | Holocene fluvial and alluvial-
plain deposits in upper Ganges
and Solani River valleys and in
narrow mountain valleys | Sporadic to locally abundant fissures
and sand boils in a 500-km-long zone | | Middlemiss, 1910 | | 1906, San Francisco,
California, USA
(M 8.3) | Holocene fluvial and alluvial-
plain deposits in intermontane
valleys of coastal ranges | Sporadic to locally abundant lateral spreading, ground settlement, fissures and sand boils in a 560-km-long zone | Severity of effects generally decrease with increasing depth of water table and with age of sediment | Lawson, Chm., 190
Youd and Hoose,
in press | | | Holocene and Pleistocene
alluvial-fan deposits | No significant effects attributable to liquefaction reported | | Lawson, Chm., 190 | | | Holocene deltaic deposits at
mouths of Eel River and
Lagunitas Creek | Abundant lateral spreading, fissures and sand boils | | Lawson, Chm., 1908
Youd and Hoose,
in press | | | Holocene beach deposits along
northern California coast | Few fissures and sand boils in back-
beach deposits. No effects reported
in fore-beach deposits | | Lawson, Chm., 190
Youd and Hoose,
in press | | | Holocene and Pleistocene aeolian
deposits on San Francisco
peninsula and near Monterey Bay | Shallow flow landslides on several
hillsides. Few fissures and sand
boils in dunes | Sediments were wetted by
heavy rains in 6-week period
prior to earthquake | Lawson, Chm., 1908
Youd and Hoose,
in press | | | Holocene colluvium in coastal ranges | Shallow flow landslides on several hillsides and in a single narrow valley | Materials were sandy in
nature and were wetted by
heavy rains in 6-week period
prior to earthquake | Lawson, Chm., 1908
Youd and Hoose,
in press | | | Pleistocene marine terraces in
northern California | No significant effects reported | *** | Lawson, Chm., 1908 | | | Cretaceous marine sandstone
bluffs at False Cape (Cape
Fortunas) | A single, large (800-m-wide) land-
slide (lateral spreading?), in 150-m-
high bluffs, ran out into the ocean
400 m | Liquefaction is only one of several possible mechanisms that could have led to the large lateral movement | Lawson, Chm., 1908 | | | <100-year old artificial fills
in San Francisco | Lateral spreading and ground settlement in three separate fills | Fills constructed with loose-
dumped dune sand. Average N
(standard penetration resist-
ance) generally less than 10
in upper 10 m | Youd and Hoose,
in press | | 918, Srimangal,
India | Holocene fluvial and alluvial-
plain deposits in the
Brahamaputra and tributary
river valleys | Sporadic to locally abundant lateral spreading, bearing capacity failures, ground settlement, filling of wells and borrow pits, fissures and sand boils in a 180-km-long zone | | Stuart, 1920 | | 1920, Kansu, China
(M 8.6) | Pleistocene loess deposits in
Kansu Province | Abundant flow landslides including 17 large flows (incorporating areas up to several km²) occurred in three separate areas in a 300-km-long zone | Liquefaction was apparently due to pore-air rather than pore-water pressures | *Close and
McCormack, 1922 | | 1923, Kwanto, Japan
(M 8.3) | Holocene fluvial and alluvial-
plain deposits and reclaimed
land over these deposits in
east-central Honshu Island | Abundant lateral spreading, ground settlement and sand boils in a 750 km² area traversed by the Tone River prior to 1600 AD. Sporadic to locally abundant occurrences of these effects in a 130-km-long zone | | Home Office, 1926
Kuribayashi and
Tatsuoka, 1975 | | EARTHQUAKE
(Magnitude, M) | DEPOSIT | EFFECTS ATTRIBUTED TO LIQUEFACTION | APPURTENANT INFORMATION | REFERENCE | |--|--|--|---|--| | 1931, Hawkes Bay,
New Zeland
(M 7.9) | Holocene and Pleistocene
fluvial and alluvial-plain
deposits in east-central North
Island | Sporadic to locally abundant lateral spreading, slumping of stream banks, fissures and sand boils in a 200-km-long zone | Artesian water pressures occur under many affected areas | N. Z. Department o
Scientific and
Industrial
Research, 1933 | | | <pre><!--OO-year-old artificial fills over Holocene fluvial deposits, chiefly in Napier and vicinity</pre--></pre> | Locally abundant lateral spreading,
bearing capacity failures, ground
settlement and fissures | Effects were most severe in areas with high water table | N.Z. Dept. of Sci.
and Ind. Res.,
1933 | | | Holocene lagoonal deposits near
Napier | Lateral spreading, bearing capacity
failures and ground settlement near
and beneath a causeway and pier | | N.Z. Dept. of Sci.
and Ind. Res.,
1933 | | | Holocene beach deposits between
Napier and Gisborne | Locally abundant lateral spreading
and fissures with few sand boils in
90-km-long zone | Effects were most severe in beaches near mouths of rivers and streams | N.Z. Dept. of Sci.
and Ind. Res.,
1933 | | | Upper Tertiary mudstone bluffs | Five deep-seated large landslides
(lateral spreading?) with widths up
to 2 km and runouts into the sea as
far as 700 m developed in 180-m to
360-m high coastal bluffs in a
30-km-long zone | Liquefaction is only one of several possible mechanisms that could have led to the large lateral movements. The bluffs are composed of soft, friable mudstones. | N.Z. Dept. of Sci.
and Ind. Res.,
1933 | | 1934, Bihar-Nepal,
(M 8.4) | Holocene and Pleistocene
fluvial and alluvial-plain
deposits in the Upper Ganges
and tributary river valleys | Abundant lateral spreading, bearing capacity failures, ground settlement, collapsed and filled wells, fissuring and sand boils over a 12,000 km² area and sporadic to locally abundant occurrences of these,effects in an additional 70,000 km² area | | Roy, 1939 | | 1948, Fukui. Japan
(m 7.2) | Holocene fluvial and alluvial-
plain deposits in Fukui
alluvial plain | Abundant lateral spreading, ground settlement, fissures and sand boils with some bearing capacity failures in a 300 km² area | Water table was near surface
in most of the area | U. S. Army, 1949
Tsuya, 1950 | | | Holocene and Pleistocene
aeolian sand dune deposits on
the west edge of Fukui plain | Sporadic fissures and sand boils in a 7 km² area | Damage to buildings on sand
dunes was slight | U. S. Army, 1949
Tsuya, 1950 | | 1954, Fallon-
Stillwater,
Nevada, USA | Holocene fluvial deposits in old
river channels in the Fallon-
Stillwater area | Locally abundant ground settlement,
fissures and sand boils in a 30-km-
long zone | Old stream beds had been both
naturally and artificially
filled with sand | Tocher, 1956
Steinbrugge and
Moran, 1956 | | (M 6.8) | Holocene playa deposits in
Carson Sink and Alkali Valley | Locally abundant lateral spreading, ground settlement, fissures and sand boils in a 30-km-long zone | Failures occurred both in
cultivated lands and around
superficially dry lake beds | Tocher, 1956
Steinbrugge and
Moran, 1956 | | April 7, 1958,
Alaska, USA
(M 7 - 7 1/2) | Holocene fluvial deposits along
Keokuk River | Abundant lateral spreading, fissures and sand boils in a 100-km-long zone | | Davis, 1960 | | | Holocene aeolian sand dune
deposits overlying fluvial
deposits south of Keokuk River | Abundant flow landslides in a 70-km-
long zone | Flows involved materials from
both dune and fluvial
deposits. Dunes were frozen
to about 1-m depth | Davis, 1960 | | 1960, Chile
(M 8.4) | Holocene fluvial deposits along
rivers in the mountaneous and
coastal regions between
Concepcion and Puerto Montt | Sporadic to locally abundant lateral spreading, ground settlement and some bearing capacity failures in a 45,000 km ² area | | Duke and Leeds,
1963 | | | <200-year-old fills over fluvial
and alluvial-plain deposits in
Concepcion, Valdivia, and Puerto
Montt and some roadway embank-
ments between these cities | Pervasive to abundant lateral spread-
ing, bearing capacity failures, ground
settlement. fissures and sand boils
and some flow landslides in filled
areas | Fills consisted primarily of
loose dumped or hydraulically
placed sands. Water tables
were near or within a few
meters of the surface in the
affected areas | Duke and Leeds,
1963 | | | Holocene lagoonal deposits in
Valdivia | One localized area sustained abundant
lateral spreading and ground settlement | Sediments were layered silt with peat and silty sand lenses | Duke and Leeds,
1963 | | | Holocene beach deposits
near mouth of Bio Bio River | Sporadic sand boils with throat diameters up to 0.6 m | | Duke and Leeds,
1963 | | | Holocene and Pleistocene
glacial-outwesh and lacustrine
ternace deposits between
Valdivia and Lake Rinihue and
Puerto Montt | Low-lying wet terraces around Lake
Llanquihue commonly failed by lateral
spreading or slumping. Mine major
deep scated landslides (flow?)
occurred on river cut slopes in
Pleistocene terraces. | One deep-seated landslide mear
Lake Rinihue covered a 1.26
km ² area, moved 300 m horiz-
ontal and 20 m vertical in
less than 5 minutes. The
failure plane was in saturated
lacustrine silt and clay
of Pleistocene age | Duke and Leeds,
1963 | | 1964, Alaska, USA
(M 8.5) | Holocene fluvial deposits along
rivers in south-central Alaska | Abundant to pervasive lateral spreading, ground settlement, fissures and sand boils occurred to a distance of 160 km from the epicenter and sporadic to locally abundant effects of these types occurred up to 500 km from the epicenter | Fluvial deposits in this
region contain little or no
clay-size particles | U. S. Geological
Survey, 1966-1970 | | | Holocene alluvial-fan and -plain
deposits in south-central Alaska | Abundant to sporadic lateral spreading, ground settlement, fissures and sand boils up to 320 km from the epicenter | | U. S. Geological
Survey, 1966-1970 | | | Holocene deltaic deposits in south-central Alaska | Sporadic to abundant flow landslides,
lateral spreading, ground settlement,
fissures and sand boils in active | The deltas are extensions of alluvial fan deposits into the sea | U. S. Geological
Survey, 1966-1970 | | EARTHQUAKE
(Magnitude, M) | DEPOSIT | EFFECTS ATTRIBUTED TO LIQUEFACTION | APPURTENANT INFORMATION | REFERENCE | |---|--|--|--|--| | 1964, Alaska, Contd. | Holocene and Pleistocene glacial outwash terraces | No effects to locally abundant lateral spreading, ground settlement, fissures and sand boils within 160 km of epi≃ center | Effects were most severe where water table was near surface and terraces were dissected by streams | U. S. Geological
Survey, 1966-19 | | | Pleistocene glacial moraine
and till deposits in south-
central Alaska | No significant effects reported | | U. S. Geological
Survey, 1966-19 | | | Pleistocene estuarine-moraine
deposits (Bootlegger Cove clay)
underlying Anchorage | Several large, deep-seated, lateral-
spreading landslides occurred in a
100 km² section including Anchorage.
Additional fissuring was common in
areas above landslides | Principle failure planes (20m - 30m deep) passed through
Bootlegger Cove clay unit
which contains frequent silt
and sand senses | U. S. Geological
Survey, 1966-19 | | | Holocene beach deposits on
Homer spit and Shearwater Bay
(270 km and 520 km from
epicenter) | Localized occurrences of lateral spreading and fissures | Both beaches are located in
bays that are somewhat
protected from the open sea | U. S. Geological
Survey, 1966-19 | | 1964, Niigata, Japan
(† 7.5) | Holocene fluvial deposits and reclaimed land over fluvial deposits in the Niigata sedimentary basin | Pervasive lateral spreading, bearing capacity failures, ground settlement, fissupes and sand boils occur-ed in a 20 km area of Niigata and its environs. Sporadic to locally abundant similar effects occurred throughout the 500 km Niigata sedimentary basin | Sands and silty sands generally with average N-values less than 10 in the upper 10 m extend to considerable depths in the affected areas. Water tables were within a few meters of surface in most areas. Sediments deposited or placed in the last 100 years were more severely affected than those several hundred years old | Kawasumi, 1968 | | | Holocene and Pleistocene
alluvial-plain deposits in the
Niigata sedimentary basin | Sporadic lateral spreading, ground settlement, fissures and sand boils occurred in a 500 km² area | Effects were much less severe than on fluvial deposits | Kawasumi, 1968 | | | Holocene aeolian sand dune,
deposits along Sea of Japan
near Niigata | Sporadic to locally abundant lateral
spreading, fissures and sand boils
occurred in some dune areas | Some but not all effects may have originated in underlying fluvial or alluvial-plain deposits | Kawasumi, 1968 | | 1965, Chile
(M 7 - 7 1/4) | <100-year-old hydraulic fill
dams in mountainous region
north of Santiago | Of 22 tailings dams in a 50 km² area most failed by flow landslides and several were completely destroyed. One dam failure released a 1.900,000 m² flow that traveled 12 km and killed more than 200 people | The tailings deposits consisted mainly of silt- and clay-
sized particles | Dobry and Alvarez,
1967 | | 1968, Tokachi-Oki,
Japan
(M 7.9) | Holocene and Pleistocene fluvial
and alluvial-plain deposits on
northern Honshu and Southern
Hokkaido islands | Sporadic to locally abundant lateral spreading, bearing capacity failures, ground settlement, fissures and sand boils developed in a 260-km-long zone | Water tables were generally near or above surface due to topographic location of deposits and 160-210 mm of rain that fell in the 3 days prior to the earthquake. Severity of effects generally decreased with age of deposit | Suzuki, 1971 | | | Pleistocene volcanic ash and
pumice deposits (Shirasu
geologic unit). These deposits
are widespread in epicentral
area | Sporadic to locally abundant flow
and lateral spreading landslides,
bearing capacity failures, fissures
and sand boils in a 260-km-long zone | Water levels were generally
high due to heavy rains in
3-day period preceding earth-
quake. Abundance of flow
landslides was greatest in
areas of highest rainfall | Suzuki, 1971 | | | <100-year-old artificial fills.
embankments and levees over
fluvial and alluvial-plain
deposits in northern Honshu and
southern Hokkaido Islands | Sporadic to locally abundant flow and
lateral spreading landslides, bearing
capacity failures, settlement,
fissures and sand boils | Many failures involved only
materials in the fills and
embankments. The surficial
materials were wet, if not
saturated, due to heavy rains | Suzuki, 1971 | | 1971, San Fernando,
California, USA
(M 6.4) | Holocene alluvial-fan deposits
east and west of Van Norman
Lake | Two separate lateral spreading land-
slides accompanied by fissures and
sand boils | N ranged between 20 and 25 in
suspect saturated alluvial
layer at 16 m depth in one
landslide area | Dixon and Burke,
1973
Youd, 1971 | | | <60-year-old hydraulic fill dams
in northern San Fernando valley | Embankment failures occurred in two dams | | Seed and others.
1975 | | 1976, Guatemala
(M 7.5 preliminary) | Holocene fluvial deposits along
Motagua and other rivers | Sporadic to locally abundant fissures and sand boils in a 130-km-long zone | Sediments were mainly micaceous quartz and pumice sand | Hoose, 1976
. unpub. data | | | Holocene deltaic deposits at
Lakes Amatitlan and Atitlan,
Guatemala, and Lake Illopongo,
El Salvador | Sporadic to locally pervasive lateral spreading, ground settlement, fissures and sand boils, and some bearing capacity failures | Sediments composed of fine silt- to cobble-size pumice. Dry density of in-place sediments about 0.6 gm/cm ³ | Hoose, 1976
unpub. data | | | Holocene aeolian sand dunes at
Omoa, Honduras | One local instance of lateral spreading, fissure and sand boils | | Plafker, George,
1976, oral commun |