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SYNOPSIS

The lateral forces caused by earthquakes on offshore structures in-
clude fluid-structure interaction effects in addition to structural iner-
* tia. The interaction forces include the added mass force, friction, and
radiation damping. The study describes the effect of these additional
forces on the response spectrum. Also presented are hydrodynamic parameter
spectra for determining the kinematical quantities for use in selecting
coefficients associated with these forces.

INTRODUCTION

Response spectra are used widely in the design of land-based struc-~
tures to resist earthquake motions. Redponse spectra are also useful in
the design of offshore structures if adjustments are made to include the
effects associated with fluid-structure interaction. Submerged portions of
an offshore structure are subjected continuously to forces associated with
water waves and currents. When the structure responds to earthquake exci-
tation, additionzl fluid forces are generated by the motion of the struc-
ture with respect to the water. These forces include the '"added" or
"hydrodynamic" mass effects, additional drag and lift forces, and "wave
making" or "radiation damping" forces. Analytical representation of these
fluid-structure interaction forces usually includes empirical coefficients
which depend upon basic dimensionless hydrodynamic parameters involving
fluid properties, geometry of structural members, and kinematical

quantities.

The studies described here were o>nducted to answer two related ques-
tions. First, what effects, if any, do the additional fluid-structure
interaction forces have on the structural response spectrum? Second, what
are the ranges of the basic dimensionless hydrodynamic parameters which
occur during earthquakes? The latter question was intended to provide a
basis for future experiments since available experimental data for the co-
efficients are not very extensive. The approach used in the study was to
compute various response spectra which include the fluid-structure inter-
action terms in the equation of motion of the oscillator. The results of
the computations are used to develop approximate methods of computing re-
sponse and other quantities appropriate to hydrodynamic parameters. The
excitations used were various earthquake records as well as regular

patterns of base motion.

FLUID-STRUCTURE INTERACTION FORCES

Structures of interest here primarily are "jacket" or 'template"
.structures used for offshore production platforms. They are space frames
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constructed of tubular members that have small diameters compared to the
depths of water involved. Accordingly, fluid-structure interaction forces
are computed from Morison's formula; a formula developed originally for
static structures loaded by ocean waves. If Morison's equation is used for
computing fluid-structure interaction effects, it may be written as follows
when waves and currents are ignored

F=+Kx|%| + K ¥ +K*% ¢H)

where F is a fluid-structure interaction force acting on part of the struc-
ture. The quantities % and % are absolute structural velocity and acceler-
ation respectively as defined in Fig. 1. The quantities , K, and K_are
coefficients of drag, added mass, and radiation damping respec@lvely.

Dimensional analysis suggests that the coefficients may be a function
of at least the Reynold's Number and the ratio of maximum structural dis-
placement, x , to member radius, R, i.e., x /R. The nature of the latter
parameter may be illustrated as follows. When x /R is small no significant
flow separation occurs and the values are essent?ally those for unseparated
flow. For larger values of the ratio, partial vortex shedding leads to
unsymmetrical flow patterns which may cause substantial variations in the
coefficients. For very large values of the maximum structure displacement
with respect to member radius, the wave appears more comparable to that in
steady flow and , at least should approach the steady flow value. Thus
the coefficients in Eq. (1) depend on kinematical quantities such as
absolute structure velocity and displacement. It should be noted that
these coefficients may depend also on the ambient flow, i.e., waves and
currents.,

When the added mass term is included in the equation of motion for a
structure, conventional practice is to combine it with the inertia force
of the structure to produce a force equal to the virtual or total mass
multiplied by the acceleration of the structure. Thus the effect of the
added mass term is to alter the natural frequencies and mode shapes of the
structure, Estimates of the added mass coefficients can be made for simple
geometries in a fashion similar to that given by Newmark and Rosenblueth
(2) and for more complex cases by numerical methods similar to those
developed by Garrison and Berklite (1). In the presence of the free water
surface, the ideal fluid added mass coefficient is in fact frequency
dependent, but methods noted are adequate so long as the ratio hf/g exceeds
about 1.0. Here h is the depth of water, f the frequency of the ground
motion in Hertz, and g is the gravitational acceleration. For the
structures considered here, this criterion is likely to be satisfied except
for very low frequency structures in fairly shallow water. Caution need be
exercised, however, since real fluid effects may alter the added mass co-
.efficient in a manner similar to that described above. That is, if the
“ maximum value of the total displacement of parts of the structure exceeds
some fraction of the member diameter, partial flow separation may alter
: ]coefficient from the value predicted by ideal fluid theory. Addi-
tional comments on the wave making force are given below.

ELASTIC RESPONSE SPECTRA

; Elastic response spectra may be defined to include the fluid-structure
int raction effects. Consider first the case where the force given by Eq.
(1) consists only of the inertia force and velocity-squared force, i.e.,
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K X + KDilil. Then the equation of motion of the simple oscillator shown
m

in Fig. 1 is
2

3+ 2802 + o'z = - § - T 2 kx| (2)

where B is structural damping, w is the natural frequency including the
sum of the actual mass and K , I' is a dimensionless parameter which equals

(KDa)/K, and a is maximum ground acceleration.

Fig. 2 shows the effect of the parameter I' on idealized response
spectra. In the low and mid-frequency regions, the velocity drag produces
effects comparable to viscous damping. In the high frequency range, the
parameter causes a ''tail" parallel to a line of constant displacement. In

the region of the tail the psuedo-velocity, V', is given by the following
equation.

2
v'=T Iy (3)
a

Here v is the maximum ground velocity.

The non-linear hydraulic drag term can be linearized by replacing the
term KDi[il by a term KDLi where KDL is selected to make the work done by

the forces to be equal when averaged over the duration of the earthquake
Accordingly, KDL is given by the following equation.

t1
f %% |x|dt
o

motion, tl.

Ky, = K “
[
o
An equivalent linear hydraulic damping ratio can be defined as B'
= KDL/(ZMM). Accordingly, the linearized equation of motion becomes
2+ 2(B+B")wz + wzz =~ 3§ - 28wy (5)

Eq. (5) provides a slightly conservative estimate of response up to a fre-
quency slightly below that for which the high frequency tail intersects
the acceleration—amplified region of the spectrum. In the tail region,
the linearized solution can be substantially in error; in fact, the ratio
of psuedo velocity in this region from Eq.- (5) to that for Eq. (3) is
KDL/(KDV) where v is the maximum ground velocity. Apparently, the upper

bound frequency for which Eq. (5) is valid can be taken as the inter-
section of the tail and acceleration-amplified region of the spectrum.

If the term 2B'wy on the right hand side of Eq. (5) can be ignored,
the equation reduces to that normally used for land structures, except
that the damping factor is the sum of structural and hydraulic damping.
Empirical studies show that it may be ignored provided the total damping,
B+B8', is less than about 10 percent. Up to that limit the error in com~
puted displacements is less than about 5 percent. It is extremely useful,

987



therefore, to be able to estimate B' without using Eq. (4). Empirical
studies show the hydraulic damping can be estimated conservatively as
follows.

v, Lo ¥E
B v o I — (6)

where f is the natural frequency in Hertz. For low frequency systems Eq.
(6) overestimates the amount of equivalent damping and therefore will
yield unconservative spectral values for f<v0.2 Hertz. TFor very high fre-
quencies Eq. (3) gives an accurate estimate of the psuedo-velocity.

In accordauce with the discussion above, approximate response spectra
can be constructed using ground motion amplification factors such as those
given by Newmark and Rosenblueth plus modifications in the very low and
high frequency regions. In this procedure the displacement amplification
factor is selected on the basis of the structural damping factor. The
velocity and acceleration amplification factors are based on an amount of
damping equal to the sum of the structural and linearized hydraulic damping
factors. The psuedo-velocity in the high frequency region is computed, if
necessary, from Eq. (3). This is illustrated on Fig. 2 where line 1 is
computed for the structural damping, lines 2 and 3 for the sum B + B', and
line 4 from Eq. (3). Methods for combining modal responses in multidegree-
of-freedom are discussed elsewhere (3).

Consider next the ca:e when radiation damping is present and the ve-
locity drag term is absent, i.e., F = K % + K %X. The equation of motion
becomes the same as Eq. (5) except that g 1srreplaced by B" which is the
radiation damping coefficient. If B is taken as a constant, the resulting
spectrum is icdentical to that described above for linearized hydraulic
damping. The psuedo-velocity in the tail region is given by 2B'"v instead
of by Eq. (3). Available data are not adequate to determine the radiation
damping factor. Ideal fluid theory may be used, but the computations are
complicated. An estimate which is adequate for high frequency systems,
based on inviscid fluid theory is as follows.

2
g =2mn (- ) (—0 @

where A is the ratio of the mass of water displaced by the structure to the
'sum of the actual mass and added mass, h is the depth of water, g is the
‘gravitational acceleration and R is radius of the members. Eq. (7) is
‘based on the assumption that the structure moves as a rigid body in transla-
tion and that the ground motion is periodic. Since B" is sensitive to the
 displacements near the water surface, it is easily an order of magnitude

~ less than the value giv:n by Eq. (7) for low frequency systems having small
- absolute displacements near the free water surface.

SPECTRA FOR HYDRODYNAMIC PARAMETERS

;max1mum velocity, X_, are necessary in order to compute
,Fand the Kuelegan—Ca%penter modulus. Response spectra for

be: _estimated using amplification factors and maximum
7ﬁon quantlties. ‘The amplification factors depend only on the
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total damping, i.e., the sum of structural and hydraulic damping. Amplifi-
cation factors are given in Table I. Fig. 3 shows the hydrodynamic para-
meter response spectrum for the maximum absolute displacement. The
"velocity" scale is wx_. The line labeled 1 is the result of multiplying
the maximum ground disglacement by the displacement amplification factor.
The line labeled 2 is the amplified value of the maximum ground velocity.
The line labeled 3 is the maximum ground displacement.

Fig. 4 shows the idealized spectrum for X . Lines labeled 1 and 2
are amplified maximum ground displacement and velocity respectively. The
line labeled 3 is amplified maximum ground acceleration. The line labeled
4 is the maximum ground velocity. Methods for approximate analysis of
multidegree of freedom are given elsewhere (4).

SUMMARY

Methods are presented for determining approximate response spectra
and hydrodynamic parameter spectra for ocean structures such as production
platforms. These include added mass, drag resistance, and radiation

damping.
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TABLE I
Amplification Factors for Hydrodynamic Parameter Spectra
Total Maximum Displacement Spectrum Maximum Velocity Spectrum
Damping Accelera-
(percent) Displacement Velocity Displacement Velocity tion
0 2.4 5.2 2.2 4.1 7.1
1 2.2 4.4 1.9 3.1 4.9
2 2.1 3.6 1.6 2.6 3.7
5 1.8 3.1 1.4 2.0 3.1
10 1.6 2.1 1.2 1.8 2.6
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