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SYNCOPSIS

I

A normal seismic analysis assumes all parts of structu~
ral foundation to be subjected to the same displacements and
accelerations simul taneously and the seismic disturbances to
be propagating instantaneously along the structure’s verti-~
cal dimension. While for small structures such an assumtion
may be gquite acceptable, for lengthy and high structures it
is distorting the real picture of dynamic behaviour. The re-
port deals with some problems of introducing the length of
structures and non-instantaneous vertical propagation of
geismic disturbance in design analysis.

EFFECIS OF EXTENSION OF SIRUCIURE UNDER
SEISMIC INFLUENCES

Let us assume that the different points of structural
foundation undergo various displacements Y, (%,X) and acce-
lerations Y’ (t,Xx) at a given moment of time /Fig.I/. Ta-
king into consideration the fact that the extension of struc-
ture is much less than the epicentral distance it shall be
assumed that the propagating seismic disturbance reaches a
given point of foundation with a certain velocity 7, , de-
pending upon local site conditions and remaining constant
within the length of structure Y,/ (4x)= Y (t-X/) . Equa-
tions of forced vibrations for the system shown in FPig.I wi-
thin the time interval of seismic wave passing from support

{-1 %o support { can be presented in the form
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After the moment of time when the seismic wave reaches the
last -the support /setting in motion all support/ the
equation of damped vibration may be presented as
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The systems of equations /I/ and /2/ are integrated at the
following initial conditions:

with 1‘=€, Ge=0, Y,=0

- s ’
with €= JZ{';% y Yei~Yeis 5Yi=Yis, /3/
= =12, --. 9
X . (A
with £o X;f,»‘f s Y=Yy Y=Yy
J=
where e, % s Q=2 CQx; , d, - mass dispracement Jafter

the wave reaches the last support/, rigidity and damping
factor for K& -th floor resp., ¥, the bottom section dis-
placement of the ground floor ¢ -th column, AL natural
torsional frequency /Y..-floor displacement at the moment
when the wave reaches the (¢ -th support/. Presenting the
solution of system of equations /2/ as

yn(é)zg{ Cz-(,uz(t} /4/

where Cxz are the < - the natural mode vibration amplitudes
at £ the point, for orthogonal co-ordinates &y(%) with
o= cons? we sghall obtain
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As it to be seen from /5/, in considering the length of
structure for seismic force calculations, it is necessary in
addition to earthquake accelerogram 4”&/ to have also an
earthquake seismogram Y (¢) . To obtain the seismic response
spectrum regarding the length of structure let us examine a
single degree of freedom frame system /Fig.2/. In this case
the linear oscillator equation will be

G (3)y+ o= HR Il )4 0] 1
at initial conditions: “6=‘,§; > Y=Y, Yy=4'.
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The equation /6/ was integrated for the harmonic vibration

G ()=100Sin Gt 5 T, =bRsec
Pig.2 shows that sntroducing of length of the structure re-
gults in a substantial change of the resonance curve. For
period range of T<{GR the introduction of length increases
the dynamic ratio up to two or even more. For a range of
82 <T<0,4 the dynamic ratio is decreasing 1,5-1,7 times
and for T z04 the length influence is negligeable. For some
values of 445 the resonance curve takes an inversed form.

It is interesting to note that the resonance amplitudesdec-
reagse and increase periodically depending on the value of
Qﬁg /Fig.3/. [herefore in case of a purely harmonic ground
vibration for the given site conditions the length of the
structure may be selected so that the oscillation phase dif-

ference will be
£ =2+ kT (k=012) VY

where 7, the dominant period of ground oscillation. In this
cagse there’ll be no dynamic effect on the structure.

In some cases practical recommendations may be worked
out by employing %he averaged ground accelerations and as-
cribing these accelerations %o all structural foundation,
thus assuming these accelerations to be

$" )= Vg [ 455 4/

By way of numerical integration the Y""@)values were defined
on the basis of some real accelerograms, The results shown
in Fig.4 indicate that the length-of structure is to be con-
sidered for structures and site conditions where the % ,</7
holds. Since averaging does not result in substantial change
of the actual frequency content of accelerogram, the same is
expected to occur also with structural response values.

INITRODUCING THE FINITE VALUE OF VELOCITY OF SEISMIC
DISTURBANCE PROPAGATION ALONG THE HIGHT OF THE
STRUCTURE

A seigmic study of structure usually assumes the vertical
propagation of the disturbance to be instantaneous., Such an
assumption is acceptable for low structures. Meanwhile the
experimental studies of multietory steel, reinforced concre-
te, large panel and masonry buildings have proved the stroke-
-wave propagation velocity to be 200-1000 m/sec. /Fig.5,
table 1/ which is substantially low than the similar values
registered in a continuous medium. Such a phenomenon may
apparently be caused by the presence of joints, floors, ope-
nings in buildings and the resulting non-hemogeneous path
of wave-propagation. Therefore a seismic analysis of high-
-rise buildings mus?t be based on a finite value of seismic
wave velocity.Presented below is a simplified method of
introducing this factor. The analysis is carried out for a
discrete cantilever lump-mass system. The seismic disturbance
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is assumed to be propagating from the foundat

lon upw
with the velocity 7~ . Simplified kinematics of tgﬁ :;gtem
at consecutive mements of time are presented in Fig.6., At
the moment t,= 4/, , when the disturbance is transmitted
to ?Se ground floor, the equation of system movements is

2 MY+ myl+ a,y, + &yt — /10/

=f
Therefore at the time interval of O <t< ﬁ;zé the baha-
of the system is defined as that of a single degree of free-
dom with the ground floor rigidity Q, , frequency £ and
damping factor o, . fhe initial conditions for the ?ézation

/10/ are +=0, Y =0, Y =0 . At the moment +.=% hi/,
the disturbance has reached the £ —the floor the behaviour
of the system is defined by following K equations:

& . " x . . ,
gxﬂh -":, +‘§’I77.: Y +q; (y:‘- —y‘_,L)t%m (-‘/zi. _ %:I;);o .y
with the initial conditions < %2 %3 =23,..n

at

-&K 32_3,5 2 .L/,éz =‘yﬂl:*‘/ 5 y‘:‘. =y’:"_’
yzx=oJ gg,g=0, (=128 - K

After the disturbance has reached the top floor the move-
ments of the system are characterized by the complete get
of equations:

& “” 7 Vel

Z‘m,:y[ + (Z,_,[y,,-yk_,)f- .Q_%FO_L (yz'- y‘_,)=—-Zm£ %”[—é) /12/
“ ek ﬂ:/]e}...n
with the initial conditioms

at
b ’ '
~‘§/':=;_g/7)"J Y=Yern ; Ye=%n,

K:/’ZJ...,’

Thus although the state of the system after the disturbance
has reached the top floor is described by set of usual equa-~
tions, the different initial conditions for floor displace-
ments result in a phase difference of floor inertial forces
and in subsequent quantitative and qualitative changes of
- system’s stress-strain condition. An example is presented

of evaluationg the seismic forces originating in a multisto-
rey reinforced concrete building from a seismic stroke.

Do simplify the analysis the floor rigidity of the structure
is assumed to be constant all over the hight and the first
normal mode period 7, =4,/77 . The results show the non-
-instantaneous propagation of seismic disturbance to influ-
ence substantially the shear force maximum values and the
overall stress-strain distribution along the hight of the

Struc'bure /table 2, Figo'?/-
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FIG. 7 SHEAR~FORCE DISTRIBUTION IN
4 20 STORY BUILDING

Table 1.

Experimental values of the periods and velocities
of shear waves in buildings

Type of structure [Number of | Period of ambient | Velocity
storeys vibration T; m/gsec V¥
Buildings with 5 0,3 600
large stone-block 5 0,25 750
walls 5 0, 21 690
5 0,28 710
Large panel 9 0,3 900
buildings 9 0, 36 800
. 3 0,40 800
Reinforced concrete 9 0,6 600
framed buildings 10 0,8 250
14 1,1 210
16 1,3 330
Metal framed

buildings 16 1,35 228

Table 2.
Maximum values of shear forces at the /4% /2xmy/ groun
floor in buildings of various hights //7 -number & storeys/

)4 n=>5 n=10 =15 n= 20
%2 3,73 1539 11, 01 14,63
1200 3y 54 6,84 10, 20 13,56
800 3,70 7516 10, 77 14,29

500 4, 03 8,12 12, 19 16, 15

300 4,73 9,70 15,03 19,92

200 5, 60 12, 24 18, 46 24,48
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