EARTHQUAKE DESIGN OF REINFORCED CONCRETE COOLING TOWERS
by
Gordon LA.I, Zabolotnaya V.A.H

Reinforced concrete cooling towers of thermal power stations are
space structures that can be represented as shells of revolutions with
the height amounting to 150 m. The principal loads for these rather im-
vortant structures under ordinary conditions are the dead load and the
wind load. In the areas of high seismicity seismic loads should also be
taken into account. Numerous publications (i.e. /1, 2, 3/) pay attention to
the abowve factors within the bounds of different seismic stability theories.

A method for calculating reinforced. concrete cooling towers accord-
ing to the Standards in force in the USSR at present [4/ is given below.

A cooling tower is studied as a shell of revolulion by the linear
moment theory of thin shells with the elasticity law in a Balabuh-Novozhi-
lov formulation [5/. The shell material is adopted homogeneous and iso-
tropizc. The middle surface of the shell is formed by rotating a smooth
curve T=Y(2) around the axis of rotation 0z : the position of points of the
middle plane is defined by coordinates % and P - ‘The shell may com-
prize two zones: the upper zone - a hyperboloid of revolution and the
lower zone - a truncated cone. The following fastening conditions are as-
sumed for the end plate sections of the shall Zg and 2, : rigid fasten-
ing, movable and immovable links, free edge, continuous linear - deform-
able support.

The definition of the stress-strain state of the structure within the
limits of a linear spectral seismic stability theory necessitates the solu-
tion of the following problems:

1) the ‘determination of natural vibration frequencies (periods) and
modes of a shell;

2) the evaluation of seismic loads corresponding to each mode;

3) the definition of the forces and displacements corresponding to
the seismic loads over each mode ( static problem);

4) the estimation of the design forces and momants within a shell
for several vibration modes

By a method given below all the four problems ara successively
solved.

The determination of natural vibration modes and frequencies is bas-
ed on a variational equation of the problem:
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_Q)ZBTk'f' 3vk=0 (2)

where ) - natural frequency to be determined; Tk ) vk ~ kinetic and
potential energies of the system respectively. The values of T and
are expressed in terms of the components of the displacement wvector

f:Lk-—:- (le (’Z)C.OS]:((:?_) VK(Z) Si_nk(f N \/V‘k (2) COSk‘f) (2)

where U, (2) , Vi (2) , Wi (2) are the components of the displacement vec-
tor of a generatrix @ = 0 in the meridial, tangential and normal directions to
the middle surfacek = 0, 1, . . . . . . n -~ circumferential wave number.
BEquation (1) is solved by the finite element method according to a scheme
given in (6). The interval [Za ,Zb] is subdivided into n elements. With-
in each element the displacements "l.,Lk s V'k are approximated by a linear
function, and wk is approximated by a cubic parabola. The substitulion of
the approximating polynomials into equation (1) leads to an algebraic pro-
blem of the eigenvalues for a set:

Boxo+ CoX,= wZ(EQXu+ G'D X‘)
Aj Xj_1+Bij + CijM = (L)Z(Dj Xja ¥ ijj + G‘j Xj+4) (3)
A, 7B, =Dk E )

Here Ai , 53 . C‘i Dy, Ei Gy - axe matrices, Xg -

3

(ukjavki S Wi >Wk’) (index T stands for transponency); J = 1, 2.
n-1" 2 node’ number,

The method for the determination of the eigenvalues and the eigen-
vectors of the system (3) is described in [6/.

A program for the determination of free vibration modes and frequen-
cies is worked out, allowing to evaluate the contributions of such structur-
al features as height, shape of the a meridian, law of variation of thick-
ness, foundation pliability, rigid and inertial effect of the side rings of the
tower. A numerical procedure /7/ revealed that the foundation pliability af-
fects most appreciably the mode and frequency spectrum. The boundary
conditions of a rigid fastening or a link type yield essentially the same
results. Small variations of the meridian shape, the presence of the rigidi-
ty rings and thickness variations of the lower sections of the tower pro-
duce but a negligible effect upon the spectra of natural modes and fre-
quencies.

Contribution of seismic load in point J corresponding to the L -th
vibrational mode is defined with the expression [4]:
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where Q) - the weight of the mass in point J H KC - seismicity coeffi-
cient; . -~ dynamic coefficient; ¥}; - mode coefficient determined as a
vibration mode multiplied by Fourier coefficient.

To obtain an expression 7]{ for a case under study, reasoning and
calculations are carried out on the basis of /8/.

A equalion for the induced seismic vibrations of the shell assumes
the shape of:

LUw) +m@maw = m@A®) (5)

Here L. is a differential opergjor_of the eighth order /'5/,LL('D=(U(£),V(D}W&»
- elastic displacement vector; A=F Y (})- base acceleration vector (F -
uniy vector) .

Seismic load wvector

gz(s(«)’ 5(2), 3(3))T= m(z)(a +A—) (6)

Introducing (5) in the form of

w(t) =g we (2)

where l,l_i_- eigenmodes; we find out that the normal coordinates satisfy
the =quations:

é.L(ﬂ+ wzg.t(ﬂ=D.LY(t) (8)
Here
[[meF ude
D.L - = (9)
]g! m(z)? dQ
If a term accouniing for the energy dissipation is introduced into (8),

after the solution of the equation (with consideration of (6) and (7)) the
following relation is obtained:

Sty =5 S, -
o t ..
=Im@uDw, | Y@e
0

=

LA (29
27 Tsinw, (tv)dT

'K-— energy dissipation factor.
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Hence
-S—-L = maxt ( gl(t) \ =m (Z) Dl aLCw (TL) (112)

where CW(T:) - acceleration spectrum.

Equation (1) is presented in the form corresponding to (4)

< = Y 12
S =K. Q@pn; (22
where
n.- =W - 13
Nt u’LD L (13)
With account for the expression for the displacement vector under

free vibrations (2), the seismic load vector components are written down
as

®
S\ =KCQ(z)p.Lu.lkDikcoSkcg
S8 K. Gor g Dysinkg
St ~K.Q@ pwi Dy coske

Under horizontal seismic effects, the expansion of the seigmic load by the

angular coordinate retains only one term corresponding tok = 1, and coef~
ficient Di assumes the form:
H

gQ(Z)(-u.Lsino( ¥V +W; cosa) A, cosydz
D= -

(15)

H ,
Jam e+ v+ w)A, de

Here A is an angle _betweeh the vertical axis and the tangent of hyper-
bola; Y is an angle between the horizontal axis and the direction of the
seismic impact; A, - Lame parameter [5/.

Under vertical vibrations of the base one term of the expansion, cor-’
responding to K = 0, is also retained. Thus, the expression for Di as-
sumes the following shape:

H
é Q@ (u;cosa ~w; sino)A, sinydz
Di = H , (16)
[ Q@ +w2)A, dz

1]

2022



With the seismic influence arbitrarily directed in space, the Fourier series
of the load expansion over the angiilar coordinate contains the terms cor-
responding toK = 0 and k = 1,

After the determination of all the seismic load components a solution
for the shell under static load must be obtained (for each vibration mode).

With the loading conditions of the type (14), the solution of the pro-
blem express in form:

U =1, (@)cosky; V=Y, (Z)sinke; w=wk(z)ceskc_p (17)

The static problem is solved in terms of displacements by a variational
method. Obtained is a variational equation of Lagrange

S(V-A)=0 (19)

where V - potential energy of deformation; _A_ - the work of the external
forces.

The finite element method is applied with the approximation of displa-
cement identical to that of a free vibration problem ( piece-line functions

for l.lk . VK and Hermitian polynomials for WK )

The substitution of the approximating polynomials into (18) results in
a system of algebraic equations:

Bt,+Cot, =1,
Aij-a +E)jxj + ij'J” = "5 (29)
Ahxn-(}.bhxhz‘}h

T

’ T 4 (2 3 4
X3 :‘(ulkj)vikjjwikj?wik]'); J‘J "(:“ > } b f}; ]k )

A'l) ﬁ] ) C] - 4x4 matrices.

A set (19) is solved by block exclusion by Gauss method, From the
solution defined are the displacemenis U‘lk' s \/tKJ ,‘N{ki ’Wiki after
which with the use of the elasticity law and the numerical differentiation
formulas, efforts and moments in the ] -th points of the structure for each
{ ~th mode and K -th harmonic are obtained.

Here

The design forces summed over several modes are oblained by 14/

\J 2 T N2
Nd -YN%_+0,55N: (20)
t=d
N,,,Qi— maximum force in a design section; Ni_ - forces over the whole
number of the vibration modes for the same section (excluding Nm ax ).

In this case an exact number of modes taken into account for achiev-
ing an acceptable accuracy can be defined only by a numerical procedure
(for cooling towers of different geometry and different directions of seismic

impact) .
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Calculation example. As a calculation example studied is a problem
of determining the forces developed under horizontal and vertical s‘eis.mic
impact in a hyperboloidal cooling tower with the following characteristic
parameters: height = 90 m, radius of the base Rq = 38.2 m, thickness of
the lower zone (tiruncated cone) variating from 0.6 m at the base up to
0.14 for the height of 20 m and remaining constant with further increase
in height; parameters of hyperbola of the upper zone Q = 20,3 m

b = 46.28 m, elastic modulus E « 3,15x105 MPa, densityf =2.5Mg/m3;
Poisson's ratio = 0,16. The following boundary conditions were set:
rigid fixing of a shell at the base and a free end at the top, Calculations
reveal that the inclusion of the higher modes of vibration into the evalua-
tion of meridial forces under vertical impacts is not required. The maximum
meridial force under the wvertical seismic impact and seismic coefficient

Ke= 0,1 N1 = 50 kN/m. Under the horizontal seismic impact and

Ke= 0.1 the maximum meridial force N} = 70 kN/m the inclusion of the
higher modes of vibration does not substantially affect the wvalue N, 4
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