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SYNOPSIS

Methods are presented for obtaining accurate response of structures
with closely spaced frequencies, generation of floor spectra and analysis of
secondary systems with multiple supports for seismic design. The methods
are based on stochastic concepts, but no stochastic seismic input is required;
only structural quantities such as system frequencies, mode shapes and part-
icipation factors, and, of course, site spectra curves are required.

INTRODUCTION

For the design of important structures such as nuclear power plants,
site spectra curves are most commonly used to define seismic inputs. Based
on a study of recorded accelerograms, Newmark, Blume and Kapur (1) have
defined the generalized shape of these curves. Fig. 1 shows such a typical
spectrum curve.

So far, direct use of the response spectra has, however, been limited
to the analysis of primary structures by the square-root-—of-the-sum—-of-
squares (SRSS) method. Improvements in the SRSS method are needed before
it can be applied to complex structural systems where the frequencies are
close to each other. For the design of light equipment and other secondary
systems with multiple supports, the design input in the form of floor spectra
is obtained by time history analysis in which spectrum consistent time
histories are used as seismic inputs. In the analysis of earth structures
where consideration of strain dependent soil properties is important, the
current methods of analyses also require that time history be used as input.
To obtain an input time history for such analyses, a recorded or synthetic
accelerogram is modified such that its spectra envelope the given spectra.
Thus given spectra are used only indirectly. It has been shown that the
results obtained from a time history analysis depend upon the input acceler-
-ogram used i. e. the results can be different for different accelerograms even
though they may be all consistent with the given spectra. For design pur-
poses such analyses should, therefore, be used with caution. The methods
which do not require an accelerogram and which can be used with the given
spectra directly would, therefore, be preferable.

Herein methods which extend the direct applicability of ground spectra
curves beyond the conventional SRSS approach are proposed for amalysis of
primary structures with.closely spaced frequencies, generation of floor spec-
tra and analysis of secondary systems with multiple supports. Similar methods
for the anmalysis of earth structures are described elsewhere (2).
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METHODS OF ANALYSIS

It is assumed that the earthquake motions represented by site spectra
can be modeled by a stationary random process. Thus, there is a power
spectral density (PSD) which represents the motions. Let the PSD be denoted
by ¢(w). For this PSD to be comsistent with the prescribed site spectrum,
the maximum response of an oscillator excited by the PSD motions should be
the same as the response spectrum value. The maximum response of the oscil-
lator for a PSD is a random variable, and its value is associated with a
probability of exceedance. However, to avoid using any specific number for
the probability, it may be assumed that the maximum response is an amplified
value of the root-mean-square response. For convenience this amplification
factor can be assumed to be a constant. This defines a relationship between
the response spectrum and the associated PSD; for an acceleration spectrum

this can be written as: 229 )
° 4 222 2 _ 2 -
C_£ o (w) [wb + 4Bowow 1/ [(wo w) + 4B°W0W ldw = R CWO) (1)

where C is the factor, wy = oscillator frequency, R(w,) = response spectrum
value at w,, and By is the damping of the oscillator. The response of a
primary or secondary structure can now be expressed in terms of the PSD.

ANALYSIS OF PRIMARY STRUCTURES: The design response of a structure can
be written as (3),
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where j, k denote mode numbers; N=significant number of modes; y;= partici-
pation factors; qj=the modal value of the response quantity (like displace-
ment, force, stresses, etc.); ws=the frequencg; A, B, etc.=coefficients, as
defined in Ref. 3; and IHjCW)IZ = 1/{w? - w?)? + 4 g% w2w2}, where By is
structural damping. The single summation term in Eq- 23ig the same as the
usual SRSS and represents the contribution of the individual modes. The
double summation term represents the effect of interaction between modes.
For system with close frequencies, the contribution of this term is signifi-
cant and should be considered in determining the response.

To define R in terms of the response spectrum, the integrals I1 =

c/s w§ @ (w) |3 (w) |2dw and I, = C S w% w2 () |H, (w) | 2w should be defined in
terms~of response spectrum value at wi;. This &as done in Ref. 3, and is
probably adequate; nevertheless, the Iollowing improvements are in order.

If damping is small, Eq. 1 gives I = C S w?@(w)[Hj(w)lzdw = R?ij),
but a more accurate expression is
I, chwj) / @+ 4 sﬁ) (3)
Iy is defined by the relative velocity characteristics of the oscillator
response. It can be shown that
2 )
I, =Cs wj?w Q(w)lHj(w)lzdw =C o (wj)wg’ s f|,!Hj(w)|2dw (%)

For broad band spectra such as shown in Fig. 1, the PSD of the excitation

will also be a broad band one. Fig. 2 shows such a PSD. Also shown in the
figure is the function wglﬂj(w)lz for two values of w:. For low frequencies
it can be shown that ] :
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1, =c w;‘ s o(w)[i{j(w)lzdw = c w;' o) I IHj(w)Izdw (5)

and thus I; = I = R2(w )/(1+43§). For the spectrum of Fig.'l, this will

be reasonably accurate Yor wy <9 cps. For wy > 9 cps, the PSD of the excit—
ation decays rapidly. For such a PSD, and for 9 < wy < 33 cps, the integral
I; can be approximated by the following:

I. = C f¥I e(w)dw + C 9(w,) Iw;{Hj(w)lzdwx L +1, (6)

1
Here, 9 cps and 33 cps are the Control Frequencies of the site sp&ctra.

For w, < 9 cps, Iy is zero, and I; = I,. Also for vy > 33 cps, I = Ag,
Iy i'%, and thus I = 0. A, is the maximum ground accelerationm. For 9 <

ws < 33 cps, I, was observed to increase exponentially. Thus, using Eq. 6,
I2 can be obtained from the following:

I, =1, - A; (1a w; = 1n 9)/(ln 33 - 1n 9) %)
Denoting I-‘(wj) = Iz(wj)/]’.l(wj), the design response, Eq. 2, can be written as
2 N 22 4 e B} )/ 4
= +#2% I v.v. 4.9 [{A+ F(w,) B}, (w,)/w,
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INPUT SPECTRA FOR SECONDARY SYSTEMS: Using the formulation developed in

BRef. 3, and the definitions of I; and I; described above, the following
equation is obtained for floor spectrum value at frequency w,:

2 N 2 2
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where R‘(wo,u) is the floor spectrum value for floor u, ¥(u) is the relative
modal displacement of floor u, and A, B, etc. are defined in Ref. 3.

Factors A, B, etc. are, however, not defined for a resonating case;
1. e., when w_ is the same as one of the stmcturgl frequencies. In such a
case, an integral I3 = C / 0(w) (W3 + 4 82 w2 w2)2|H_(w) |%dw is involveds
and this needs to be defined in terms of response spectrum value R(wy). For
various frequency ranges, I3 can be defined as,

2
Iy=a RW) 3 W, <9 cps ) )
= (1-A)(n w_ - 1o 9)/(In 33 - 1n 9)Ag + AR%(w); 9 <w_ < 33 cps
m o - o0 —
= Ag2 3w, > 33 cps (10)
where
2, 2 2 .2 2 2
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The underlying basis of Eq. 10 is the same as that of Eq. 6. To establish
the validity of Eq. 10, the integral I3 was obtained by contour integration
for a spectrum consistent PSD and by Eq. 10. The two values of I3 were in
good agreement with each other.
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SECONDARY SYSTEMS WITH MULTIPLE SUPPORTS: The equation of motion of a

secondary system with more than one suppozt can be written as:

[Hs]{;} + [Ks] (u} =-(4] (1} (Y + xg) - [k {y} (12)

where [Mg] and [Kg] are the mass and stiffness matrices, [K.] = n by m cross
stiffness matrix for n masses and m sSupports of the sccondary system, Y, =
relative displacement of a reference support o, Xg = ground excitatioq, and
{u} and {Y} are the displacements of the masses and supports, respectively,
relative to the reference support, o. The r.h.s. of Eq. 12 can be expressed
in terms of the modal quantities of the primary system. Using the normal
mode approach, Eq. 12 is solved to obtain the design response as:
2% 2. § .22 ta 4 B (w ) + (C+ DI (w )]
Ry =%y Yar® I Vol 15k 1%
N N
trrol kaijwpkwp
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vhere the quantities with subscript p are for the primary system and those
with subscript s are for the secondary system, y=participation factors,
y=relative displacement mode shapes. A, B, etc. are the coefficients of
partial fractions which, besides the frequency ratios and damping values,
also depend upon the participation factors and [Kc] of the secondary system.

NUMERICAL RESULTS

Numerical results demonstrating the application of the proposed methods
to certain practical situations are presented. Eq. 8 has been used to obtain
the member response results for a structure with closely spaced frequencies.
The results obtained by the random vibration approach using a spectrum con-
sistent PSD are used as reference for comparison. The effectiveness of the
random vibration approach itself for determining more accurate response of
primary and secondary systems was demonstrated in Ref. 4 and 5. A system
with torsional mode as shown in Fig. 3 is used. The system parameters can
be adjusted such that the natural frequencies are close to each other, as in
Table 1. Table 2 shows the results obtained by the random vibration approach,
the conventional SRSS method, and the proposed method (Eq. 8). It is seen
thatoshe.proposed method consistently gives better results than the SRSS
method.

Application of Eqs. 9 to 11 for generation of floor spectra is straight-
forward. Fig. 4 shows a floor spectrum generated using Eq. 9 for a nuclear
power plant floor. The comparison of this curve with the curve obtained
by a more accurate stochastic approach was found excellent.

Application of Eq. 13 for obtaining member forces in a secondary system
having multiple supports is likewise straightforward.
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SUMMARY AND CONCLUSIONS

Viable methods which directly use site spectra curves for seismic
analysis of primary and secondary structures are described. The proposed
methods are ratiomal in concept, straightforward for application and in-
expensive computationally.

REFERENCES

1. Newmark, N. M., Blume, J. A. and Kapur, K. K., "Seismic Design Spectra
for Nuclear Power Plants,”™ J. Power Div., ASCE, 99, 287-303, Nov., 1973.

2. Singh, M. P., and Agrawal, P. K., "A Stochastic Method for Seismic
Stability Evaluation of Earth Structures with Strain Dependent Proper-
ties,” 6 WCEE, New Delhi, 1977.

3. Singh, M. P. and Chu, S. L., "Stochastic Consideration in Seismic
Analysis of Structures,” Int. J. of Eq. Engrg. and Str. Dyn., Vol. 4,
No. 3, 1976.

4. Gungor, I., "A Study of Stochastic Models for Predicting Maximum Earth-
quake Structural Response,” Ph. D. Thesis, Univ. of Illinois, Urbana-
Champaign, Aug., 1971.

5. Singh, A. K., and Ang, A. H.-S., "Stochastic Prediction of Maximum
Response of Light Secondary Systems,” 2nd Intl. Conf. on Str. Mech. in
Reactor Technology, Berlin, Sept., 1973.

TABLE 1

FREQUENCIES OF TORSIONAL SYSTEM

Mode FRQ. Mode FRQ.
1 1.0 5 4.860
2 1.056 6 4.911
3 2.919 7 6.244
4 3.083 8 6.742
5 4.602 9 7.122

TABLE 2

SPRING FORCE IN THE TORSIONAL SYSTEM, FIG. 3

Spring Random SRSS Proposed Method Eq. 9
No. Vibration Force Col. 3 Force Col. 5
Method Col. 2 Col. 3

1 8.65 - 7.47 .863 8.67 1.002

2 7.85 6.76 .861 7.86 1.000

3 6.63 5.67 .856 6.59 0.993

4 5.03 4,28 .851 4.97 Q0.987

5 4.57 4.03 .882 4.52 0.988
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