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SYNOPSIS

An analysis is made of the steady-state response of a simple pile-supported system as a
means of assessing the effects of various parameters entering into the problem of
soil-pile-structure interaction. Numerical results indicate that for linear systems compliance of
point-bearing piles is negligible for tall buildings but may be significant for medium tall and
squatty structures. Interaction reduces the fundamental frequency of the system but the
primary effect is to reduce the peak response. This effect becomes more pronounced as soil

deformability increases.
INTRODUCTION

Present knowledge of the effects of soil-structure interaction on earthquake response of
structures is derived mostly from studies of buildings on mat foundations!-2. Little
information is available concerning the behavior of pile supported structures. Systematic
studies of dynamic soil-pile interaction have been conducted under various simplitying
assumptions. Both discrete nonlinear models®, and linear elastic*>> and viscoelastic layers®
have been used to represent the soil. Some of these investigations have served as a basis for the
analysis of individual building-foundation’ and bridge-foundation® systems.

In this paper a modified version of an approximate theory developed by Novak® for
pile-soil interaction is used for analyzing the response of a building on piles. The soil is
modeled by a set of independent infinitesimally thin horizontal viscoelastic layers with
material damping of the frequency independent hysteretic type; the piles by elastic vertical
point-bearing elements of circular cross section, and the building structure by a single-degree
damped linear oscillator (Fig.1). The steady-state sinusoidal response is calculated for different
values of the system parameters to estimate effects of soil-pile-structure interaction during
earthquakes. It is assumed that the excitation at the base of the structure is the same as the
free-field surface motion, i.e., that a massless pile cap would follow the soil if it were not

attached to the building base.
DYNAMIC STIFFNESS OF THE FOUNDATION

Fundamental to the problem of soil-structure interaction is the evaluation of the dynamic
force-displacement relationship for the foundation. Since the procedure used in this section
follows closely that given by Novak$, only an outline will be presented.

Consider first the case in which a pile is excited by horizontal translation and rotation of
its head in the vertical plane. Let the origin of the coordinate system be located at the top of
the pile, with the vertical axis pointing downwards toward the bottom of the soil layer. When a
pile element dz undergoes a complex horizontal displacement u(z, t) at height z, it meets a

horizontal soil reaction

G(S,; +iS,,) u (z. Ndz )
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in which G = shcar modulus of soil. Parameters S,,; and S, represent dynamic stiffncss and
damping of the soil and arc functions of Poisson’s ratio v, the loss factor D, and the
dimensionless frequency a, = wr, (p,/G)"2 . Shown by continuous lines in Fig.2 are the
stiffness and damping functions S,; and S, ,forv = 0.4, D = 0, and several values of the pile
slenderness ratio Hfr,, as functions of a,. These curves have been obtained from the
functions given in Ref 5, but modified? 4l in a ncighborhood around a, = 0 and the
fundamental frequency of the layer, to which the results from the original theory are not
applicable®. Functions Swi and Sw P corresponding to the vertical vibration of the pile have
been similarly obtained. Effects of material damping on the herizontal and vertical soil
reactions are shown by broken lines, in Fig. 2. (The correspondence principle of viscoelasticity
was used for extending the elastic solutions.) Results indicate that material damping produces
an increase in the damping coefficients S, , and S,,, beyond the fundamental frequency, and
also a reduction in the values of S, and S,,7 - This reduction may be viewed either as a
decrease in the soil stiffness or as an effective mass of soil moving along with the pile.

With soil reactions defined by Eq. 1 for horizontal translation, and a similar equation for
vertical motion of the pile, the corresponding equations of motion of the pile can be written
and solved in a straightforward manner. Stiffness and damping coefficients can be obtained
directly from these solutions, and thence extended to a set of piles®.

ANALYSIS OF THE SYSTEM

The system under investigation is shown in Fig. 1. The single-story structure of height hy
is linear, viscously damped and has a base mass supported on piles. The structural base 1s
assumed to be a rigid cylindrical footing, with circular or rectangular cross section. Pile
configurations are indicated in Fig. 1b. The idealized structure may be viewed either as a direct
model of a one-story building frame, or, more generally, as the first-mode approximation of a
multistory structure. In the latter case m;, k;, ¢;, and h; must be replaced by the
corresponding first-mode generalized quantities. : -

The base excitation is specified by the free-field motion at the ground surface. Only the: .
effect of ground motion in one direction will be investigated. With these assumptions, the
equations of motion for steady-state harmonic response .of the building-foundation model

shown in Fig. 1 are

my ¥, + ;v H kv, =0 (2a)
mlﬁt+mo(ﬁo+ﬁg)+cvfzo+cv¢¢+kvvo+kv¢¢=() (2b)
mihyV, H1Lé +e,btc, v,k 9tk v, =0 (2¢)

In these equations, v, = horizontal displacement of the top mass relative to the base
mass, excluding rotations; v, = free-field surface displacement; v, = translation of the base
mass relative to the free-field motion; ¢ = rotation of base mass, and v, = total horizontal
displacement of top mass with respect to a fixed vertical axis, i.e., v, = v, + v, + h;¢+v,
Functions k,, k,, k,, and ¢,, ¢4, c,, are the frequency dependent stiffness and damping
coefficients of the foundatlon These functions are obtained by adding to the terms
determined from the previous section the corresponding contributions arising from the contact

between the base mass and the soil 8-°.
For steady-state excitation, v, (t) = Vg explicot), Eqs. 2 represent a set of linear algebraic

equations that can be solved explicitly once the stiffness and damping coefficients k, , kg, k5
and ¢,, Cos Cyo have been determined. Solutions have been obtained for these equatlons for

several combmat:ons of the system parameters; results are shown in Figs.3 to 11.

In plotting the response curves for the system it is convenient to introduce, in addition to
the dimensionless parameters defined earlier, the following,
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in which 2 = radius of an equivalent circle which has the same area as the actual (circular or
rectangular) foundation; w; = circular natural frequency of the superstructure;
Vp = longitudinal wave velocity in the piles. v; = relative stiffness between the superstructure
and the soil material; v, = height ratio of the superstructure; y; = relative mass density for
the structure and the supporting soil; v, = base mass ratio; and s = relative stiffness between
superstructure and pile.

Results presented in Figs. 3 to 11 are divided into two sets. The first group (Figs.3 to 7)
corresponds to a circular foundation with pile configuration depicted in Fig. 1b while the
second (Figs.8 to 11) refers to the rectangular foundation. All the figures have been calculated
for a Poisson’s ratio »= 0.4, soil damping factor D= 0.1, p,/p,= 0.7, z,/a= 0.75,
3 =0.15, and v, = 2. These values are intended to be representative of real systems. With
these values fixed, the building foundation system shown in Fig. 1 is specified by the
dimensionless parameters 7, T2 Vs> b/L, H/ro s ro/a, and the critical damping ratio of the
superstructure, n,; the dimensionless excitation frequency w/w; is the independent variable,
and the amplitude of the displacement of the top mass is measured by the ratio w? [v I /ﬁ'g,
Also the base displacements |vo|/ vl and |k 101 /v ;1 will be analyzed.

The three sets of response curves in Fig. 3 illustrate effects on the structural response of
the relative stiffness y;, and of the height ratio 7. Note that v, is independent of the building
height &; when the structural stiffness k; is inversely proportional to 43. The three values of
v; (3, 6 and 15) were chosen to model hard, medium and soft soils, respectively. Effects of
relative pile stiffness 75, and radius, 7,/az, on the resonant frequency, ":’1. /w; , and peak
amplitude of the response are shown in Figs. 4 and 5 as functions of y;. Results corresponding
to the foundation without piles (ys = o) are also shown, for comparison.

Even though the building-foundation system under study has several degrees of freedom
the frequency response curves shown in Fig. 3 resemble those of a simple oscillator. It is,
therefore, convenient to define an effective critical damping ratio ?7'1 associated with a simple
linear oscillator that has the same resonant frequency as the complete interaction system. The
value of ?7'1 is chosen in such a way that the amplitude of the response of the associated
simple oscillator matches that of the complete system both at resonance and for the limiting
static value w/w; = 0. With these requirements,

~ 1 v
N, == ———— )
2 wjly, Imax

Values of ?f] , corresponding to various combinations of n,,y; and v, are shown in Fig.
6. The influence of the extent of contact between the pile cap and the ground surface on the
base displacements is illustrated in Fig. 7 for several values of v, and relative pile stiffness v5.
Both perfect bond and complete separation between pile cap and soil are considered.

Comparison of interaction effects for buildings that exhibit different geometrical and
dynamic properties in two orthogonal directions is provided by the response curves shown in
Fig. 8. In calculating these curves it has been assumed that the natural period of the
superstructure along the length of the foundation is two thirds of that in the short direction.
Shown in Fig. 9 are resonant frequencies and peak amplitudes of the response corresponding
to various pile distributions. To model the response of structures with different numbers of
piles, groups of four piles at each of the nine locations have been considered in addition to the
original arrangement of nine individual piles. Effects of changes in structural damping, type of
contact, and structural and pile slenderness and stiffness are illustrated in Figs. 10 and 11.

CONCLUSIONS

oint-bearing piles on rock effectively increase the stiffness of the foundation, primarily
ang rocking but also affecting the swaying of the base. The natural frequency of the
approaches. that corresponding to a rigid base assumption as a result of these actions.
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2. While the peak response gencrally decreases as a result of interaction actual reduction is
strongly dependent upon the system parameters. Reductions are negligible for tall structures
(v, = 4) but become significant for smaller values of v,. Pronounced effects occur for large
7Yy » corresponding to soft soils or to structures that are relatively rigid compared to the soil.
Clearly, increases in pile radius and pile stiffness bring the response closer to that
corresponding to a rigid base, as does augmenting the number of piles. :

Results of the present study are based on a simple building-foundation model. The
observation that interaction tends to reduce the maximum response, however, would seem to
remain valid for more complex linear soil-structure models, whenever the ordinates in the
design spectrum decrease with increasing period in the region of interest. This effect could be
important in design, as it would allow the structure to be designed for smaller excitations than

would be required under a rigid-base assumption.
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DISCUSSION

. S.L. Agarwal (India)

In this paper the soil has been represented by shear
modulus, poisson's ratio and damping coefficients. In ano-
ther method, the soilis represented by Winkler model, known
camonly as p-y curves. For the offshore piles, subjected
to wave loads, some of the codes like API, recommend the use
of p~y curves and are silent regarding the method used by
authors in this paper. Authors may elaborate whether their
method has been checked using the conventional winkler model
method. The correlation, if any, claimed by using different
models may be elaborated.

D.V. Reddy (Canada)

In a recent investigation at Memorial University of
New Foundland, the discussor found considerable discrepancies
about 50% between values computed fram linear and non-linear
analysis. The discussor would, therefore, question the vali-
dity of linear analysis. While it is agreed that non-linear
analysis in more complicated, non-realistic approximate solu-
tions have very little value.
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