ON THE FUNDAMENTAL DIFFERENCES OF THREE BASIC
SOIL-STRUCTURE INTERACTION MODELS

B. D. Westermol and H. L. WongII
SYNOPSIS

The theoretical modeling of a flexible soil -foundation system, under-
going dynamic interaction with a superstructure, is ofter} rep‘rese.ntfed. by
a rigid base placed on a soil medium which resembles eJ:ther an infinite
half space, a layered stratum, or a soil medium with finite size. Due to
wave interferences caused by the geometrical boundaries, these models
possess some marked differences in their dynamic behavior. In this paper,
the differences between these models are discussed on the basis of exact
solutions for two-dimensional soil-structure interaction problems. The
results indicate that the half space model induces ''radiation damping'' on
the structural response because of geometrical spreading of waves. In the
other extreme, the finite '"box-like' soil medium may trap all or a signifi-
cant portion of the wave energy within, thus creating unrealistic resonant
conditions. For the case of an infinite horizontal layer, some resonant
modes occur even though radiation damping is present.

INTRODUCTION

In analyzing complicated problems, such as those of dynamic soil-
structure interaction, quite often the capability of the most sophisticated and
detailed methods of analysis become insufficient. In such problems, some
details must be sacrificed. Generally, the most crucial step in simplifying
a soil-structure interaction analysis is the first step, i.e., the selection of
an appropriate soil and foundation model. To date, popular models for the
soil medium may be classified roughly into three groups: (A) a half space,
(B) a layered stratum, (C) a soil medium enclosed partly or totally by a rigid
boundary. The latter model is sometimes chosen when numerical methods
such as finite element and finite differences are applied; the finiteness of the
model dimensions is primarily restricted by the limited core space available
in present day computers.

Luco et al. (1974) investigated the differences between Models A and C by
first comparing the exact solution for a rigid strip foundation on an elastic
half space (Model A) to a two-dimensional finite element solution of a strip
over a rectangular soil medium (Model C) fixed at its sides and its bottom.
Their conclusions indicated that the characteristics of Model C are entirely
different from those of Model A. The impedance (the resistance to loading)
of the soil-foundation system for Model C exhibits an oscillatory behavior,
caused mainly by the constructive and destructive interferences between the
radiated waves and the waves rebounded from the rigid boundaries. These
wave interference phenomena were also observed in an analogous three-
dimensional analysis with a circular disc foundation (Atalik et al., 1975);
the most prominent interferences occur for the symmetrical vibration
modes such as the vertical translation mode.
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In the following section, the physical characteristics of the three basic
models are examined by means of exact solutions. The differences between
models A, B, and C can then be identified by the results of a parametric
study without the bias introduced by approximate numerical solutions.

THE MODELS

-Consider three, two-dimensional models as illustrated in Fig. 1. For
simplicity, only the anti-plane (SH) motion is studied; also, the embedded
rigid base is assumed to have a semicircular cross-section of radius a;.
The model in Fig. 1B consists of just one infinite layer of depth h over a
rigid basement, while in the model of Fig. 1C, the rigid boundary is assumed
to be semicircular with radius ap. The soil properties used are linear and
homogeneous, but both elastic and viscoelastic constitutive laws have been
.considered.

In the following case studies, we chose to use the impedance function
to characterize a particular soil-foundation system subjected to external
- loading., The complex impedance K, which is the force/displacement rela-
tion for the soil-foundation system, can be viewed as (Luco et al., 1975;
Wong, 1975) -

K = k +iwc (1)

where k and c are real and frequency dependent quantities which represent
the stiffness and damping contribution to K, respectively. Therefore, K may
be treated as a physical quantity adequate for describing the flexibility of the
soil medium.

From an exact solution of the two-dimensional wave equation, the har-
monic impedance function for Model (A) of Fig. 1A can be expressed in
terms of Bessel functions, J, and Y, (Wong, 1975), as

[Jl(nal) - in(nal)]
K(A) = pmray (2)
[Jo(nal) - iYO(nal)]

where x = ®/p is the wave number of the soil medium and i=,/-1 . The
quantities B=,/pn/p , B, and p are the shear wave velocity, shear modulus,
and mass density of the soil, respectively.

Using a similar procedure (Wong, 1975), the expression for the impe-
dance function of Model (C) can be obtained simply as

[Yo(xa.z).]’l(nal) - Jo(naZ)Yl(nal)]

K(C) = pmnra 3)

1 [¥, (ka,)Tgna,) - Toka, )Y (ea)]

These expressions for K(A) and K(C) are valid for both elastic and visco-
elastic soil properties. For the latter case, the solutions can be revised by
replacing p by i = p(l +i8 ), where 8 is the viscous damping coefficient. For
model C, the viscous dissipation is the only form of energy dissipation.
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To compare the numerical values of the impedance functions, K(A)
with 6§ = 0, and K(C) with 6§ = 0, 0.1, 0.25, 0.5, and 1.0, are plotted in Fig. 4
for ap/a; =5 and in Fig. 5 for ay/ay = 10.

Consider first the case where § = 0, i.e., elastic soil properties. A
direct comparison of equations (2) and (3) reveals that K(A) is complex
while K(C) is real; this suggests that no "radiation damping' due to geo -
metrical spreading is possible for Model (C) because all the wave energy
is trapped within the rigid boundaries. Another important difference
between K(A) and K(C) is that both the numerator and denominator of K(C)
have a finite number of zeroes as the dimensionless frequency »aj] increases.
At the frequencies where the numerator is zero, K(C) becomes zero, indi-
cating that the waves interfere constructively inside the rigid boundaries
and that the soil-foundation system has lost resistance to the applied load
at that frequency. However, at the frequencies where the denominator is
zero, K(C) is infinitely large; implying that the rigid base is located at
the node of a standing wave pattern where the motion is zero. The number
of zeroes of K(C) in a given interval of frequency depends mainly on the
distance a, of the rigid boundary from the foundation, this is shown clearly
in Figs. 4 and 5, where the ratio a,/aj is 5 and 10, respectively. For a
larger ratio of a;/a;, the enclosed medium can accommodate more standing
waves than a smaller medium. Therefore, K(C) oscillates with higher fre-
quency (compare Fig. 4 with Fig. 5) when the ratio ay/aj is increased.
This result might be surprising for some, because many investigators
have speculated that the results should approach the limiting half space
solution if the size of the model is increased. Judging from equations (2)
and (3), K(A) cannot be obtained from K(C) by limiting a, to infinity, this
simply indicates the different nature of the impedance for the two models.

; Since actual soil has some inherent damping, we shall continue our dis-
cussion on Models A and C by studying the viscoelastic soil effects on
energy dissipation. Through the complex shear modulus i, both K(A) and
K(C) are complex, but the nature of material damping and radiation damping
is quite different as shown by Fig. 4 and Fig. 5. At the lower limit of
wallﬁ, the material damping [imaginary part of K(C)] is much lower than
the radiation damping because the strain rate of the material is low for low
frequencies. This large difference between K(A) and K(C) at low frequency
is largely a characteristic of two-dimensional models; but other differences,
such as the oscillation of K(C), is common for three-dimensional problems
as well (Atalik et al., 1975).

Consider now the intermediate case of an infinite layer over a rigid
basement. This particular model, shown in Fig. 1B, is the simplest of all
layered models, but it can qualitatively explain some of the basic charac-
teristics of a more sophisticated layer model, expecially when the top
layer-is much 'softer'' than those below it.

To obtain the exact solution of K(B) for the model shown in Fig. 1B, we
may apply the method of images to represent the reflections from the base-
ment by summing the contribution from image foundations (alternating in
sign) so that boundary conditions at both the free surface and the basement
are satisfied. Due to the higher harmonics obtained from the boundary
reflections, the solution of K(B) resulted in an infinite series of Hankel
functions. '
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With the configuration of Model (B), radiation damping is possible
because waves can propagate outward in the horizontal direction, but the
reflections frorn the basement may also form standing wave patterns.
Hence, one can expect the characteristics of Model (B) to lie between
Models (A) and (C). In Fig. 2, values of K(A) and K(B) are plotted versus
the dimensionless frequency, wai/B, for § = 0.01, the layer depth, h, is 5a‘1.
Since the layer depth is relatively shallow, and the material damping is low,
K(B) is oscillatory and is similar in behavior to K{(C). The real part of
K(B), i. e., the stiffness, has several zero crossings occurring within the
frequency band shown. These zeroes are result of the constructive wave
interference at the neighborhood of the foundation; clearly, the strength
of the interference will decrease if the layer depth h is increased. In Fig.
3, the layer depth, h, has been increased to 10a;, and 8 = 0.1 is used. The
consequence of this change is that K(B) is remarkably similar to K(A)
except for some small oscillations, the imaginary parts of both models
also represent damping of the same nature. Hence, for a case where a
relatively deep top layer exists, the layered stratum may be modeled
adequately by a viscoelastic half space.

CONCLUSION

The theoretical modeling of a soil medium by either (A)a half space,
or (B) a layered stratum, or (C) a bounded medium has been discussed.
Since each of these models have distinctly different characteristics, the
initial selection of a model for a detailed analysis must be made with the

. following consequences in mind: (1) the selection of a model without wave
transmitting boundaries terminates the paths of wave propagation, and the
resulting model is characterized mainly by standing wave patterns and
hence, resonant type behavior. (2) The material damping introduced into
the soil model cannot stimulate the radiation damping consistently, there-
fore, the proper model must be used if the foundation site is not surrounded

by relatively rigid boundaries.
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Fig. I. Simplified two dimensional models: (A) half space,
(B) layer over rigid ground, (C) enclosed soil medium.
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Fig. 2. Impedances for model B; h/aq;=5, &= 0.0l.
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Fig. 3 Impedances for mode! B; h/a;= 10, 8=0.1.
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