ANALYSIS OF THE DAMPED RESPONSE OF A MULTISTOREY BUILDING,
CONSIDERED AS A HEAVY TIMOSHENKO BEAM, TO A BIDIMENSIONAL
SHAKING MOTION OF THE GROUND

I
F. Buckens

INTRODUCTION

Vertical motions of the ground are usually neglected in
earthquake engineering and it is shown that vertical accele-
rations are usually small compared to g. On the other hand it
is known that natural frequencies and modes are functions of
the distributed weight, whose effect is of the same orxder of
magnitude as those of rotating inertia and shear forces (1).

It is interesting to analyze in a plane the effect of
two dimensional ground motions, including possibly the presen-
ce of vertical accelerations, (as in the case of Rayleigh
waves), first without internal damping in the structure, fur-
ther including a damping of a viscous type.

Such a motion at the base @f the structure has horizon-
tal and vertical components X, (t), ¥(t), with a tilt <(t).

THE EQUATIONS OF MOTION OF AN UNDAMPED STRUCTURE
Whereas pure bending deformations of structures consi-
dered as beams imply that plane cross-sections remain plane
and noxmal to the neutral line, the effect of shear strains
entails the appearance of an additional angle ¥ (Fig.l)
i = 8S/p = S/AG (1)

(s, shear force, g » shear modulus, A, cross-section area,
)k » shape coefficient).

If y is the deflection of the neutral line and ¢ the
slope of the normal to the cross-section, one has

Dy = 2y/3x= ¢ +v (2)
with the constitutive law

Dé = - Mk = - M/EI (3)
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(M, bending moment, o0 = EI bending modulus.
The equations of motion are, with y = 2y/ dt,
D(S + Né ) = m(¥ + ¥) (4)
DM+ S -Ny=x (¢ + E) (5)

where N is the normal forxrce at a cross-section, m and r are
the distributed mass and rotatory inertia, and

z=xg-g(;-;o)+3‘r’o (6)

the axial force N being given at each cross-section by:

L
N=—(ii+g)s mdx (7
X

wlile N(L) = 0, and the longitudinal defommation of the stru-
cture is neglected. '

Eliminating M, S and ¥ from equs. (1) to (5) yields:
D[pDy - (& -NY¢] =m (¥ + ) (8)
(p-N)Dy - (p -N-DorD) =r(¢F + % ) (99

In matrix form, the system (8), (9) becomes:

Kn +J(1 +%2) =0 (10)
where
-DPD D(p -N) m 0
K = J = (11)
-(p -N)D pP-N-DxD o r
Y Z
= 4> z = ; (-1-2)

The differéntial matrix operator K is self-adjoint, that
is, according to the BettisMaxwell reciprocity theorem, the
scalar products,
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<vig e Y‘x:};’ e S W? R ,-1ldx -3 71K nzdx = <Y12. 1“17 (13)
- ' G ’ 0
ars ogual foxr any two sets of function pairs which satisfy the
and conditions, which are assumed such that, as usuals

L
o A T & - M = {14
CvLa R ) ey (S, F Ne) - b M M ]0 0o {14)
{ ¢ weaniny transpositions, and L the height of the structure),
Bl i Simabion by part integration being then straight for-
ISR &

Standand proosdure shows then the orthogonality of the
ol g aneio s -:}N{}:} defined by setting

¥ =% =0and W= nnejwnt ’ (15)

in equ. (10), d.ea, v
= ' 6
“npt Mp> 0 if Wy 7 Y (16)

and also the reality of these corresponding eigenfrequencies.

Whea vertical motion accelerations are neglected (.2'{=O) »
tha soluvion of equ. (10) is classical and can be represented
by standard Laplace integrals by putting

2

z(s) = S__ e 2(t) as : (17)
0 .
<
e = e as (18)
0
withs ;
2 2
(R, + 877) N(s) + s°Tz(s) =0 (19)
K = being defined by putting in equ. (1)
L .
N, =-g | mdx (20)
x

~instead of N in matrix K.

Bventually the solution 7v(s) provides the actual motion
each oross-section of the structure by the well-
aipwich inverse integral.
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If on the other hand vertical accelerations muse Do Cop-
sidered, equ. (10) has coefficients which depend on i, and
if 2 and N are periodic with the same period, cases of
dynamic instability can arise, which can be analysed by a
generalization of Floquet's method.

If the excitation amplitude N, ( [N-Ny|< [N | ), is taken
as a parameter dependant on of Ny, the domains of stability
and instability (e.g. the motion oscillations tend to decroase
or to increase in amplitude with time) are separataed by boun-
daries in the (Ng, NO) plane, for which the solution v is
perildic. ‘

The corresponding curves Ny = £ (Ng) can be deteowind
by numerical integrations of (10), by the conditions

W)
1(T)

" (0) (21)
7(0) (22)

]

THE EFFECT OF DAMPING

In a previous paper (2) the effect of dawping in the
structure deformations was considered in its viscous £form,
only for the bending deformations. As in the present case
the shear deformations are taken into account, it is interest-
ing to introduce the corresponding damping effect which pre-
sumablY is relatively more important than the one for bend-
ing.

Here viscosity, as an approximation to structural damp-
ing, is assumed by replacing in the constitutive equations (1)
and (2) the shear and bending coefficients p and o0 by linear
operators in 9o/ 2 t; thus by replacing ) and o« by B+pd
and +pY¥ , where p = 2/32t and P-§. e ,{ are coeffi-
cients which depend only on x. Again we usge Fraeijs de Veu-
beke's characteristic lag method (3): in this method, normal
modes of lagging deformations and corresponding external
forces (represented here in d'Alembert's inertial accelerat-
ion form) are detexrmined for each frequency, and superposition
sith their respective characteristic lags X, allows the res-
posse to the actual imposed forces.

Assuming again that X may be neglected, the same lines

can be followed as in (2) in order to detexmine the phase
lags Ax in
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20
N= 7 Y (x) sin (wt - X)) (23)
k=1

for a steady periodic response to

- _
z = Z Zk(x) sin (wt) (24)
k=1

With the previous notations, equ. (10) becomes :

(K + pH + pZJ)q + p2 Jdz =0 (25)
where -D&D DS
-&D S-DYD

Identification yields the two systems of equations
2 . 2
(R-w'J)Y cosA + wHY sinrx = w J2Z (27)

o] (28)

2 .
(K-w J)Y sinA ~ wHY cos\

Now the boundary conditions for a structure clamped at
its base (y = ¢ =0 for x = 0) and free at its top (M =S =0
for x = L) are expressed in matricial form by:

(o) 1
=0 (for x = 0), Dp = (for x = L)

° ° (29)

“and the combination of system (28) with the systems of equat-
ions (29) constitutes an eigenvalue problem for the parameter
cot A which provides the characteristic time lags Xk
(k = l. 2. .o-).

The corresponding eigenvectors Yy, defined by (28),
determine now the characteristic displacement distributions Zy.

As in (2) » the eigenvectors Yy form an orthonommal basis
~ whexeas the sets of the Yx and 23 are biorthogonal.
hat is @ '

L
S YHY dx = SL Y. (K—wzJ)Y dx = 0, (30)
o J k

k o .
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and
g Yszk =0 (31)

if cot )\k # cot., ‘Aj'

The rest of the procedure in defining the vector z is the
same as in (2) and allows to compute the damped response of
the structure to any shaking motion of the ground.

CONCLUSION

The method of characteristic phase lags has been genera-—
lized from (2), where the structure was considered as a ordi-
nary beam submitted to shaking inertial forces, to the case of
the Timoshenko beam in which not only shear deformations and
rotatory inertia, but also axial forces due to the own weight
of the structure are taken into account. It is pointed out
that the effect of vertical accelerations leads to problems of
instability of the parametric type: this point has not been
investigated further.
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