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SYNOPSIS

Structural behaviour is modelled by a multidegree - of - freedom linear
dynamic system. An equation of motion contemplating earthquake loading as
a multiple support input and/or propagating ground motion, is presented.
Earthquake vibration is idealized as a non-stationary Gaussian stochastic
process, Magnitude, source mechanism, distance to fault and local soil con-
ditions are considered. Under those assumptions the structural response is
also a non-stationary Gaussian stochastic process, whose most important prob
abilistic properties are derived. '

STRUCTURAL DYNAMICS

The general form of the equation of motion is:

M4+ Cqa+Kq=p 1)
in which M,C and K are the inertia, damping and stiffness matrices; qis the
vector of generalized coordinates; time derivation is represented by a dot;and
p is the genLerahzed forces vector.

Let denote tl}e coordinates modelling the points of support of the
stru%ture (base) and q the other coordinates; thus, reordering: q* = [(qf)
(aP)11 (where T denotes transposition); M, C, K and p_are also reordered
and l}))aruoned to exphcit support dlsplacement M-l [ (Mf) be)

{ (Mfb)T" " (gbb)TiT) . and p=0(pHT, @PT1T ; The dnsplacement qf
are decomposed in a dynam1c q4 and a pseudostauc dlsplacement qS: q
=qd 4+ qS; q9 is the displacement due to support motion in the absence of
inertia forces and is computed from qS = R qP where RfP =- (kff)-1

For simplicity it will be assumed the system has classical modes of
vibration for the free coordinates, with frequencies f; ;and mode shape vectors
z; and that only the first n modes are of interest, Let Z be the rectangular

matrix Z=[z, , e The vector of dynamic modal amplitudes x
will be defined by '-Zx ﬂme orthogonality pro| ertles and the normahzauon
condition of the modes are expressed by: ZIm , zTkffz =

= 4 n2 f;21y where I is the identity matrix and { Id denotes a diagonal
matrix. It will also be assumed that damping forges actmg on the free co-
ordinates do not introduce ‘'modal coupling; so: Z cHz=14n g fjlq where g,
is the percentual damping of the i-th mode. Let t =Aq be the column vector
of design responses (Newmark and Rosenblueth, 1971). Design responses are
strains, stresses, bending moments, ... or any quantity of interest that is a
linear function of the generalized coordinates. A is a matrix of mﬂuence co-
eff cients In terms of the base and free coordinates: 1= [Af, Abj(qf)T
é and licmng the dynamic dlsplacements and modal amplitudes: 1=
'l\f +(MNR +A)q = Nzx+ (N RP + Ab) gD, For simetry and ge-
. nerality the loading will also be made a linear function of a vector of ge-
. neralized load*ngs for the present purposes only base motion will be con-
. sidered; so P" =0. Expressing base displacements as a linear function of a
vector u of load motions: qb = Au, where 4 is a matrix of influence
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coefficients, Consider, for example, a base rotation § about a vertical axis
Y3; let qP; be an horizontal base displacement at point P, and along a
straight line L ; the corresponding cgi_effi%ent i{} A is the distance between
Y3 and_L . Let AX=N z mZ=- zT (P Mt RIP)y ez = - 2T (¢t 4
+cff be)A and AY = (Af nfb+Ab) A . After some algebra and expliciting
the time dependence:

1) = A x@ + AY u (@) 2)
KO +47m £ k@ +14n% 21 x() =M% 80+ c% a() 3)

GROUND MOTION IDEALIZATION

Earthquake ground motion is idealized as a vibration irradiating from
several lower magnitude earthquakes, whose foci are closely spaced along a
fault. The distance between foci is used to modell the intensity of vibration
originating in different zones of the fault, and breakage velocity is represented
by the time lag between the begining of the activity of consecutive foci. Each
focus causes at the site of interest an elementar motion idealized by a sta-
tionary Gaussian stochastic process restricted to a time interval. The three
components of translation are assumed independent; the influence of magnitude,
source properties, focal distance and local site conditions are accounted for
in the power spectral density and duration of the elementar motion. The two
horizontal components were assumed to have the same power spectral density.
Power spectral densities for horizontal and vertical vibrations for a large
number of situations are available elsewhere(2). This idealization of earth-
quake ground motion is discussed in more detail in a companion paper' (3).

Motions are usually described in terms of accelerations, velocities or
displacements. The cor]ieslz)onding power spectral densities are related to one
another by: Syy (f) = 4 < £< Syy (f) = (4 n2 £2)2 g (f). This is a particulariz-
ation of the general case of thé cross-spectral density between a process and
its time derivative: S ¥ (f)=-2 mif Sy ), Sg,()=+2mif S, ().

Assuming that tKe motion is due gnly to g ear waves allowgy an easy
derivation of the power spectral densities for base rotations. Let vg be the
shear wave velocity, @1 , 89 and @, the rotations about two horizontal ortho-
gonal axis Yy and Y, and the vertical axis Y3, respectively. The cross-
-spectral densities will be dependent on the polarization of the waves. Let
(i, §, k) be an even permutation of (1, 2, 3). It will be assumed that a shear
wave propagating along a Y; - axis will have two probabilisticly independent
components, one being an Y;j Yj plane-polarized wave (ppw), the other an
Yi Yx ppw. Motion along Y; axis will be due to the sum of the Y; Y; ppw
with the Yk Yj ppw. For obvious physical reasons, the six ppw's will be
idealized by six independent stochastic processes. The power spectral density
of an Yj Yj ppw will be assumed equal to the power spectral density ofthe Yy
Yj ppw; and, thus, equal to S;yj (f)/2. The rotations are the components of
the vector equivalent to the s!zew-symetric part of thé gradient of the dis-
placements: 9, = (dy; /dyy - dy, /Jyj)/2 = (% ¥}/vs + ¥ /vs)/ 2. Hence, the
power spectra’l densl’ty for @; is:

- 2 : ’
Se;a(f) = s}.,j 5, (0 /4 v, 4)

Attending to the particular properties of the assumed modell the rot-

ations are three independent processes; so Sy Om (f) =0 (1# m). The cross-
-spectral densities between translations and rotations, may also be easily
calculated:
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SBi yi #=0; 01 vl @ = Sy] ¥i (f)/ 2 vs‘ 5)

The assumption that ground motion is associated to shear waves is de-
batable, at last, for large focal distances. Rotation about a vertical axis are
also associated with Love waves and rotation about horizontal axis with Rayleigh
waves. Important rotational components may also be found near the boundary
between two geological formations of very different stiffnesses; in this case a
strong correlation between translational and rotational components is to be ex-
pected.

So far, ground vibration has been described in terms of the motion of a
point, However, for extended structures, it may be necessary to idealize dif-
ferences in ground motion along the base of the structure. Assuming earth-
quake vibration to be the result of waves travelling in several directions,
consider a wave propagating with velocity v along the base of the structure.
Let uj and u; be two load motion coordinates corresponding to two points
separated by distance d , measured along the propagation direction;then uj(t)=
= u; (t +d/v). Describing motion at u; by a power spectral density S(f), motion
at uj will also be characterized by the same power spectral density. The cross-
spectral density between uj and u; is easily derived from the correlation
function Ry y (t)=Ef{uyj (t) . uj (¢ +7)t=Ejyj (t).yit+7+d/v)i= R ( T+
+ d/v) (where E { | denotes expectation), As spectral densities amél corresporld
ing correlation-functions are Fourier pairs, then:

- D - _
sui u' (f) _J'(D Rui ui(T+d/V) exp(-2nifr)dr = 6
=exp (2 n if d/v) Sui u; (69)

SPECTRAL MOMENT DESCRIPTION OF RESPONSE

Under the previous assumptions the structural response is a non-stationary
Gaussian stochastic process. To quantify structural response by the mean and
variance of its maximum value, the knowledge of its first three time-dependent
spectral moments (Corotis et al., 1972) are required.

As for heavily damped systems stationarity will be an admissible
assumption under a wide range of circunstances, only the non-stationarity of
lightly-damped systems (1% < ( < 10%) will be considered; and because cor-
relations between response and excitation decreases with decreasing damping,
the X will be assumed independent of the u ; assuming, for the moment,
stationarity of load and response, from eq. 2) follows: '

= T AX X X u u b

S1; (0= p A2 A Sap @+ 3 Aja Asp Sap (D 7
where Sti; (f) is the power spectral density of response i ; s* p () is the
cross-spectral density of dynamic motions x, and xp ; and Sa ézf) is the cross
-spectral density of load motions uy and up. As correlations between design
responses will not be considered, there is no need of Sy ; L (f) , and Sy (f)

will be used instead of Sy y; (9. Let: Al f 78, () df, be the j-spectral

moment of response i ; ./1”; :b f fjA Alb ab (f) df, be the j-spectral

moment of response i due to dynamxc mot1on _A’“ij = azb I oa) ¢ A A“

(f) df, be the j-spectral moment of the response due to pseudo stanc
u oo
n}o_tion; A jab f g bu(f) df , the j-spectral moment of load motions uy

= f
ij HAiatip A jab - Let A;:i i .rooo o Sap (O 1H ! ot
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(where ¢,¢ =i, 0 and Hg = (fl% £ -2 (&7 f)"l is the transfer function
of a linear oscillator with frequency f, and percentual damping g ) be the
dynamical spectral moments of the load motions (see above for tlme derivation
‘in terms of spectral densities). Let p(t) =M% u(t) + CZ u(t) be the vector
of the modal forces equivalent to load motions u (t). Let ,,1

= fom 1l p (f) 'H "2 4f be the dynamical spectral moments of the
modal forces pa and Pp s then,

pf( - titif{ z z uaf(

Xape = & M7 Moy A3+ Cac Cha 4 jedk

8)
z ~z Luufl z uufg :
+ Mg de A jedk + Cac Mbd jedk )
The relationship between spectral densities of excitation and response is
a well known result of random vibration theory. For the present case:

Syp () = H, (0 HY (6) Sb. (®) 9)

where » denotes con;ugate The real and imagin {y part of Hj (f) Hb (f) ma 2’
be expressed as the sum of a function of 1 Ha (f)1“ with a function of Hp(£)1
Following Vanmarcke (1972):

y (- 276

Re [H, () HY (1)1 = — Cap +
a™’ b 32 nt (f2-f2)2+4§2f2f§
' 10)
Aba 1-£/ )

(f2 fz) +4 ngzfz

where A and Bba depend only on f,, fy,{, and gb (for its
values see (5) Slml arly for the imaginary part
-3 ,

1 Ef+Ff+G

+
32 (f2 fz) +4§2f2f2
N

Im(H, (f) H} (f)1=

Eb f+Fba +G

T D e fzfz

~where Eap, ..., Gpa depend only on fy, fy,,{,, and {} , and may be found
in (2). :

Obviously for a=b coefficients E,p , Fap» o.., Gpa are zero.Combin
ing equations 9),10) and 11) and mtegratmg in ?, the spectral moments of
response due to dynamic motion are expressed as a linear function of the

11)

3 . 12:8 = Y
dynamical spectral moments of the modal forces: "1ij A Alb ay,- | abj

£2

where a; is the vector fa, - a,in which &m =! Alrn - Blm’ lm 1

Elm , F'lm , G m)/ 32 n4 ; and llmj is the vector:
T T T T T . . _ pfl (1 pf1§1
“lmj ) ilmj’ "mglj, 'mlj I in which rlmj-—Rel,ljlm ,,1] 2.1 l and
- pf1 §1 pf1 1 £ T
'lmj Im | 'lj+l,1m , /1] -1,1m ° ?-:li,glin 1", and as the dynamical

spectral moments of the modal forces are a linear function of the dynamical
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spectral moments of load motions (eq. 8)), it is concluded that the spectral
moments of design response are a linear function of the spectral moments of
the moments of one-degree-of-freedom oscillators acted by the load motions.
Combining dynamic and pseudostatic response, the spectral moments of the

response are (from eq. 7)):
1 _ lIX A

NON-STATIONARY IDEALIZATION

For the present purposes non-stationarity of the response of a linear
oscillator acted by a stationary Gaussian stochastic process between instants
t] and t2, will be modelled by the stationary response of the oscillator mul-
tiplied by a suitable envellope function. Let t; = - @ ; after ty, the am-
plitude of the oscillator's motion will be decreasing as exp (-2 » f ( t). Hence,
for t>t2: Ay (t)=Afexp (-4 nf [ (t-t2)) where Af is a stationary spectral
moment of the response, and A; (t) the corresponding time-dependent spectral
moment. Suppose a second stati!)nary Gaussian stochastic process begining to
act on the oscillator exactly at t9. From the assumption that the response
will not be altered by the transition from the first to the second process,
follows the expression for the time variability of spectral moments: t < ty:
tAjM=05 g AjO=Af QA -exp(-47 (£(t-11); t212:A5(0) =
= Ajs (exp (- 4 7 £ {(t-t,) - exp (4 7 £ { (t-t))); These values are assimptotically

correct.
Some insight on the errors envolved in this approach may be gained

from comparison with available results. For the problem of a quiescent os-
cillator suddenly exposed to white noise excitation, the Corotis et al. (1972),
small damping approximation gives the same value for the 0-th moment,
while their 1-st and 2-nd moment differ by the presence of some time
fluctuating terms which decrease exponentially with time; these terms express
the changing in the shape of the power spectral density of rcsponse, from
wide-band at the start, to its assimptotic narrow-band form. The influence
of these terms on the reliability of a one degree-of-freedom system, may be
also assessed from ‘the same paper; for 1% < { the absence of these terms
does not affect sensibly the reliability (at last for f-.(ty - t])somewhat greater
than 1). It should be remarked that the values of 1-st and 2-nd spectral mo-
ment of the response of a multidegree-of-freedom system will be much more
dependent on the values of the 0-th spectral moment of high frequency modes
than on the values of the 1-st and 2-nd spectral moment of low frequency
modes; hence the suitability of the present approach to complex structures.

Concluding: for the present purposes, time dependent spectral moments
can be computed directly from stationary spectral moments; eq. 12) is ge-
neralllzed as: u '

A=AV iaAip 2ap lap O+ A5 ®
_ T T T T

in which 'lmi (t) = Le; (t) “lmj ) 'lmj]’ e (t) | 'mli , 'mlj

IITwhere e (t)=0,
(l-exp (47 g, L(t-1) and (exp (-4 7 £l -t -exp(-4nf § €-y)

A wu (AN

tet t, e, andt, < t, respectively, and Alj =0, 'lij , 0 for

same time intervals.
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RESPONSE COMPUTATION

In the present analysis response is described in terms of its time de-
pendent spectral moments. LetA{-k (t) be the time dependent j-spectral mo-
ment of response i due to the elementar vibration produced by focus k. Then,
as vibration irradiating from different foci were assumed independent, the
tofal spectral moment will be Ajj (t) = i"]'ijk (t). From the knowledge of the
.lij (t) follows the probability that response’ i; was not higher than a level L
(Vanmarcke, 1975).

P( 111 <L)=exp (- fomai(t) dr)

in which @; (1) = 2p; (@) (1-exp (La () (/2 AL )%/ (exp (-L2 /2L () - 1)

is the time-dependent mean failure rate of response t; ; v (t)= (27)"2 !
- i ) ('A' (v)/
/Ao (t))l/%,Z exp (-L2/ A}, (1)) is the mean rate of up-cros%ing of level Ll%nd
g (t) = (1-A%; (1) /Ao (1) AfH()1/2 is a unitless measure of variability in fre
quency content (Vanmarcke, 1972).
stuming that the probability distribution of the maximum of the res-
ponse is a Gumbel distribution: P ( 111 < x) = exp (-exp (-a (x-u))), follows the
value of the mean and variance of the maximum response;
Ti= u+V/a (V= 0.57722 is Euler's constant) U%i = m? / 6a’
. Values of u and a may be computed from the probabilities of non -
-crossing of levels .} and 1.9: '

a=In(np (llil < Ll) / InP( IS I.,z))/(I,?—LI)and u= L1 +In(~lnl-‘(ui 1< Ll))/a.

The need for characterizing response by its mean and variance has been
discussed elsewhere (Oliveira, 1975).
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