VIBRATIONS IN SUSPENSION BRIDGES
A. M. Abdel-Ghaffar’ and G. W. Housner™
SYNOPSIS

A method of dynamic analysis is developed for the vertical, torsional
and lateral free vibrations of suspension bridges. The method is based on
a linearized theory, a finite element approach and use of the digital com-
puter; it also incorporates certain simplifying features. The objective of
the study is to determine a sufficient number of natural frequencies and
mode shapes to enable an accurate analysis to be made for practical pur-
poses. The reliability of the analysis is illustrated by computing modes
and natural frequencies of a real bridge, and comparing them with the
measured natural frequencies for the vertical and torsional modes of
vibrations.

I. INTRODUCTION

In recent years few analyses [1,2,3] of the free vibrations of suspen-
sion bridges have been made by utilizing modern digital computers. Most
analysis of this kind was based on idealization of the structure through
systems of masses and springs representative of an actual suspension
bridge. With the evolution of modern digital computers, of the finite ele-
ment method of structural analysis, and of techniques of numerical analy-
sis, however, the solution capability for many structural dynamics prob-
lems has been significantly enhanced. The purpose of this paper is to out-
line a method of dynamic analysis for free vibrations of suspension bridges
and to exhibit the resulting experimental estimates of the natural frequen-
cies of a suspension bridge. The method of analysis developed employs a
digital computer and the finite element technique, and uses a linearized
theory which restricts the amplitudes of vibrations to be small. Details
of this method can be found in Ref. [4].

II. FINITE ELEMENT APPROACH FOR FREE VIBRATIONS
OF SUSPENSION BRIDGES

The finite element approach has been used to: (i) discretize the bridge
structure into equivalent systems of finite elements, (ii) select the dis-
placement model most closely approximating the real case, (iii) derive
element and assemblage stiffness and inertia properties, and finally, (iv)
form the matrix equations of motion and the resulting eigenproblems. The
evaluation of the stiffness and inertia properties of the idealized struc-
tural element and assemblage is based on the expression of the potential
and kinetic energies of the element (or the assemblage) in terms of nodal
displacements, This also determines the expressions for the stiffness and
mass matrices. Hamilton's Principle is then used to derive the equations
of motion with finite degrees-of-freedom. It has proved convenient to
separate the investigation of the symmetric modes from that of the anti-
symmetric modes of vibrations.
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1. Free Vertical Vibrations

In pure vertical modes of vibration, all points on a given cross section
of the bridge move the same amount, and they remain in phase (Fig. 1-a).
The suspension bridge is divided into a system of discrete elements which
are interconnected only at a finite number of nodal points. Each bridge
element consists of cable and girder (or truss) elements connected by two
or more rigid suspenders (Fig., 2-b), Since the displacements of each
stiffening structure node must equal the displacements of the correspond-
ing cable node, it is appropriate to define only the nodes on the centerline
of the stiffening structure (Fig. 2-a), Two nodal degrees-of-freedom
(translation and rotation) at each node were considered. The interpolation
functions associated with the two nodal degrees-of-freedom are assimed to
be cubic Hermitian polynomials (Fig. 2-c). The towers are also divided
into small elements (Fig. 2). The top element of the tower must include
the equivalent spring which simulates the influence of the restraint of the
tower by the main cable. The structural-property and inertia-property
matrices are found by evaluating the properties of the individual elements
and superposing them appropriately. The matrix equations of motion for
the free, vertical- undamped symmetric and antisymmetric vibrations are
then derived using Hamilton's Principle.

2. Free Torsional Vibrations

In pure torsional modes, each cross section of the bridge rotates
about an axis which is parallel to the longitudinal axis of the bridge and
which is in the same vertical plane as the centerline of the bridge. Cor-
responding points on opposite sides of the centerline of the roadway attain
equal displacements, but in opposite directions (Fig. 1-b). The bridge is
assumed to be divided into the same system of discrete elements which
was used in the analysis of vertical vibrations. In determining the stiff-
ness matrices of the structure, the effect of the cross-section warping
associated with torsion was considered. Warping involves the longitudinal
movement of points on a cross section (sometimes it is known as bending-
torsion), as shown in Fig. 4.

3. Free Lateral Vibrations

In pure lateral motion, each cross section swings in a pendular fashion
in its own vertical plane, and, therefore, there is upward movement of the
cables and of the suspended structure incidental to their lateral movements
(Fig. l1-c). The cable is idealized by a set of string elements, each of
which has two nodes, and the suspended structure is idealized by a set of
beam elements, each of which also has two nodes. The two sets of ele-
ments, connected by rigid hangers, form the bridge elements (Fig. 3)
which thus have four nodal-points, For the suspended-structure subele-
ment, there are two nodal degrees-of-freedom at each node: one is the
translation of the cross section defined by the node and the other is the
rotation of that cross section in the horizontal plane. The cable subelement
has only one translational degree-of-freedom at each node. This introduces
six degrees-of-freedom for the bridge element. The interpolation functions
associated with the two degrees-of-freedom of the nodal-point in the sus-
pended-structure subelement are taken to be cubic Hermitian polynomials.
The interpolation displacement polynomial associated with the one degree-
of-freedom of the cable nodal-point is taken to be a linear interpolation
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function. Finally, after the evaluation ofthe stiffness and inertia properties,
Hamilton's Principle is used to derive the matrix equations of motion for
the entire bridge structure.

III. NUMERICAL APPLICATIONS

To demonstrate the applicability of the analysis, the natural frequen-
cies and mode shapes of free vibrations of the Vincent-Thomas Suspension
Bridge (between San Pedro and Terminal Island, California) have been
computed. The eigenproblem, for each type of vibration, was solved on
the Caltech digital computer (IBM 370/158). Some of the mode shapes for
the symmetric and antisymmetric vibrations are shown in Figs. 5 and 6
for the vertical, torsional and lateral (center span only) vibrations. The
information concerning the San Pedro Bridge has been provided by the
Bridge Department of the State of California.

IV. COMPARISON BETWEEN THE COMPUTED AND
THE MEASURED FREQUENCIES

The natural frequencies of the San Pedro Bridge were accurately
determined by measuring traffic-excited vertical vibrations with sensitive
seismometers mounted at various locations on the bridge (Fig. 7). The
Fourier amplitude spectrum of the recorded vertical movements was com-
puted and plotted; Fig. 8 gives an example of one test result. The mea-
surements revealed a wide band of natural frequencies. The results for the
vertical and torsional natural frequencies were correlated with the com-
puted frequencies, as shown in Fig. 8. The results of the field measure-
ments showed reasonable agreement withthe computed values which confirms
the validity of this method of dynamic analysis developed for suspension
bridges.
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