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SYNOPSIS

This paper describes the application of a finite element approach in
analyzing the dynamic response of geometrically nonlinear cable struc-
tures during periods of stron g ground shaking. Cable structures referred
to in this paper are those whose overall structural stiffness is primarily
governed by cable elements i.e., elements which are highly sensitive to
changes in geometry. Elements of this type violate the basic assumptions
set forth in small deflection theory. Thus, large deflection theory must
be used to formulate element stiffnesses in a structufe of this type. A
discussion of cable, truss, and beam-column element formulation is
included. In large deflection theory, an element stiffness is a function of
its deformation. Given the geometry of a cable structure under gravity
loading condition, a "reference state'' is obtained by means of an iterative
procedure. An outline of the algorithm for this procedure is included. A
"state'' is defined when all the forces and deformations in the various
elements of the structure are known. Once the gravity load state is
established the structure can be solved for any time varying load function
e.g., a ground acceleration due to an earthquake. The time~-dependent
load function can be approximated as a series of step functions. A
description of two analytical step-by-step methods follow in which a
reference state is established at the end of each time step and used to
obtain a solution for the next time step. An approxnnate method using
modal analysis after establishing the gravity load state is compared with
the step-by-step analysis. The paper concludes with reference to a three
dimensional seismic dynamic analysis of a pipeline suspension bridge
using the methods outlined in the paper.

BASIC CONCEPTS IN NONLINEAR ANALYSIS
The force displacement relation can be expressed as p = ku ... (1)
where, p = element load vector in local coordinates

element displacement vector in local coordinates

u
k = element stiffness matrix

Figure (1) illustrates a nonlinear relation between p and u. It is an
abstract idealization of Eq. (1) since both p and u are vectors.

The force displacement relation at state r is p(r) = kop ul®) L (2)
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In general, koy is a stiffness matrix which is a function of a(®) ana
the material properties of the element, In elastic analysis the material
properties are considered to be constant, in which case, kg, is a function
of u, only. In the analysis that follows, material nonlinearity is not
considered.

kor can be decomposed into two components as follows (L)
=x.T G
kor =ko” * koy .ee(3)

where, koT is the linear elastic stiffness of the element at the -
unstressed state o, while the geometric stiffness kg, is a function of ulT

If the forces and displacements at an intermediate state 1 are known,
then the forces p(T) can be expressed in terms of p(’-) and ull) as follows,

p(f) =pl) 41wy =p@ + (KT +%,5) u,, ver(8)

where, k T is a function of the known displacements u(i) and is called
the tangent stiffness of the element at state i, kirG is a nonlinear stiffness
in ujy.

The matrix kiT can be obtained from the linear elastic matrix koT
by means of coordinate transformation 1), (5 .

METHODS OF ANALYSIS

Consider the force deformation relation of the structure as idealized
in Figure (2). Assume a state i is completely defingd. ‘A state is defined .
once the geometry of the structure as well as the forces and deformations .
in all its elements are known under a certain loading condition, The :
tangent stiffness KiT of the structure can be assembled from the tangent
stiffness of the elements using the direct stiffness method(4), State i
can be used as a reference state to obtain the -solution for a state j by
using either of the following two methods: '

Method (1).

Referring to Figure (2) solution is

a) Solve the equation of equilibrium A Po=P().pA=-p()l.rl)xk,T Uy,
b) ull) = gli) + Uj;

c) Transform global displacements U into element deformation u(t),
d) Transform elements coordinates to conform with new geometry,

e) Evaluate element stiffnesses le and element forces p(l).

f) Transform element forces into global coordinates and obtain F1),
g) Check if F) = PG) then state j is defined.

h) If above condition is not satisfied then obtain KlT and repeat steps
(a) through (f) until condition (g) is satisfied.
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The number of cycles required to obtain covergence depends upon the
degree of nonlinearity of the structure, the size of the loading step, the
machine precision and the degree of tolerance allowed,

Method (2)

Solution is carried out in small step-by-step loading increments as
illustrated by the schematic sketch shown in Figure (3). At the end of each
loading increment the tangent stiffness and element forces are evaluated.
The unbalanced joint loads R, which equal the difference between the

applied loads P and element forces F, are added to the next loading
increment.

APPLICATION TO A PIPELINE SUSPENSION BRIDGE

The suspension bridge analyzed consists of two main cables (1 5/8" &
Galvanized Bridge Strand) supporting a 30" diameter pipe in a vertical
plane, Two wind cables (1 3/8" @ Galvanized Bridge Strand) symmetrically
located with respect to the longitudinal axis of the pipeline and lying in a
nearly horizontal plane, comprise the lateral supporting system. The
four cables are anchored to a reinforced concrete abutment at each end of
the bridge. Two steel towers 59! and 72" high at the north and south ends
respectively and 400' apart support the main cables. Each tower supports
a pair of steel outriggers, each 31' long, hinged at the sides of the tower.
The outriggers project laterally, normally the vertical plane of the pipeline,
and support the two horizontal wind cables., The towers are hinged at their
bases, and are supported by reinforced concrete piers founded on rock.

Figure (4) shows a skefch of the idealized computer model. Cable
elements were used to simulate the main cables, wind cables, main stays
and wind stays, Geometrically nonlinear beam-column elements were
used to simulate the towers'! legs as well as the top and bottom chords of
the outriggers, Diagonals and verticals for towers and outriggers were
simulated by geometrically nonlinear truss elements.

GRAVITY LOAD SOLUTION

In order to analyze the bridge for dynamic loading, the gravity load
"reference state" had to be established. The final geometry and the
prestressing on the main cables as well as the wind cable were already
known for such loading condition. A solution scheme based on Method (1),
as previously described, was adopted. In such a scheme while the
geometry of the structure was kept fixed, the deformations and forces in
the elements, other than those of the main cables and wind cables, were
allowed to change to maintain equilibrium and compatibility, After a
gravity load reference state was obtained, the modal shapes and frequen-
-cles were obtained based on the tangent stiffness of the structure. The
fundamental periods of vibration for lateral and vertical excitation are
1 L.72 seconds and 1, 33 seconds respectively.

SOLUTION FOR DYNAMIC EARTHQUAKE LOADING

tions of motion at time t may be written as

t (t)+ F(t) = P, + p(t) +e.(5)
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where, U, U,Ii are the global displacements, velocities, and
accelerations respectively

M, C are the mass and damping matrices and are assumed
to be constant in this analysis

F(t) is the internal resisting elements forces vector in
global coordinates

P is the external gravity forces vector

o

P(t) is the external dynamic forces vector

Since M and C are assumed to be constant an incremental form for
Eq. (5) is

MAU +CAU+AF =AP ... (6)

where A denotes a change in the variable from time t to a time
t+ A t,

Using the approximate relation AF = KiT AU, Eq. (6) then becomes
MAU +C AU + AF = AP e (7)

Based on the linear acceleration method, the change in velocity and
acceleration can be expressed in terms of the change in displacement as
well as the velocity and acceleration at time t. Eq. (7) can then be
rewritten as

K AU = AP (8-2a)

6
T+'E' M+3 C (8-b)

where, K = Kt -+

(t)

8B =op + Zm {200 + 5%+ Lo {661 + 55 at) (80

The system of Eqs. (8) can be solved as in the incremental load
method(2), explained previously, It should be noted that at the end of each
time step unbalanced (or residual) forces will exist, The magnitude of
such loads depend on the size of the time step chosen, In this analysis
whenever the residual joint loads exceeded the maximum of either 0.0l of
the incremental joint loads, or, 0.1 kips, then, iteration, as previously
explained in Method (1) , was carried out, Another method of solution usir
modal superposition was also used, The method assumes that the stiffnes
does not significantly change after the gravity load state. Comparison
between the results for the two methods is made in the succeeding section,

For the comparison to be valid, the damping matrix C used in the
direct integration method had to be equivalent to that used in the modal
analysis, The damping matrix was based on the assumption of constant
modal damping equal to 0,02 of critical. The damping matrix C was
obtained by transforming from modal space to real space(7),

1263



The structure was subjected to ground shaking equal to1l.4 x El1 Centro
E/Q of May 1940 for a 15.0 second duration. In the modal analysis solution,
eight modes were considered adequate to simulate the dynamic behavior of
the structure. In the direct integration method the E/Q input record was
filtered to eliminate frequencies higher than that of the eighth mode. This
was done to avoid unnecessary numerical errors as well as to obtain a
valid comparison between the two methods. The integration was carried
out in 600 time steps 0,025 seconds each., The time step was less than 1/5
of the 8th mode period.

ANALYSIS OF RESULTS

Table 1 summarizes several of the pertinent maximum response para-
meters. It can be seen that the lateral displacements obtained by the direct
integration and the modal analyses are in good agreement, This may
suggest that the lateral stiffness of the structure, as provided by the wind
cables, remained essentially unchanged for the direction of the response.
As the pipeline deflects laterally, the loss of stiffness of the cable on the
deflected side is effectively balanced by an increasing stiffness on the other
side. The longitudinal displacement at the tip of the outriggers also show
good agreement, The vertical displacements computed by direct integration
are about twice those indicated by the modal analysis method. The longi-
tudinal displacements computed by the direct integration method at the top
of the towers are 35% greater than the corresponding modal analysis
displacements.

CONCLUSION

The above comparison, points out the inadequacy of using a modal
analysis for cable structures showing a high degree of geometric non-
linearity., However, for cable structures not exhibiting significant
geometric nonlinear behavior, a modal analysis may be used to approx-
imate a dynamic response, thereby reducing computational expense.
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Figure (1)
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TABLE 1 - SUMMARY | _ 1.4 xImperial Valley
MAXIMUM RESPONSES ) ' E/Q, May 1940 El Centro
Gravity |—
Loading ;| Direct Modal
I Integration Analysis
1 - Displacements (inches)*
1) At pipe mid span |
a) transverse 0. 11,1 | 10.3
b) vertical 0. 4,9 E 2.6
2) At top of tower t
a) longitudinal 0. 0.51 1 0,38
b) transverse 0. 0,22 ][ 0.19
3) At tip of outrigger
a) longitudinal 0, 0,39 0,32
b) vertical 0. 0,17 0. 14
II - Bending in Pipeline @ Tower (kip ft.)
a) vertical 8.2 119.0 69.3
b) horizontal 0.3 221, 0 192,0
I -~ Horizontal Component of
Cable Tension (kips)
a) Main Cables 50.0 138.0 57.2
b) Wind Cables 20.0 69.0 34.8

* Displacements are considered with reference to gravity load state.
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DISCUSSION

Prem Krishna (India)

Only a limited amount of work has been done on the dyna-
mics of cable structures and the authors have presented a
useful piece of research. It would be of interest to know
the number of modes that were superimposed to obtain the res-
ults with the modal super-position technique. The writer's
experience with cable structures has shown that often a large
number of modes are to be considered for obtaining the total
response. This was also stated by Prof. G.W. Housner in pre-
senting his paper which appears on p. 3-303 of the conference
proceedings. It has been stated in the paper that when the
pipe deflects laterally, the losg of stiffness of one wind
cable is compensated by the gain in the other. Writer's work
with cable systems of the type shown in Fig. 1 has indicated
that this may be true only for very small deflections.

Author'sg Closure

Not received.

FIG 1
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